114 research outputs found

    Optimization of Extraction Process for Antidiabetic and Antioxidant Activities of Kursi Wufarikun Ziyabit Using Response Surface Methodology and Quantitative Analysis of Main Components

    Get PDF
    By using extraction yield, total polyphenolic content, antidiabetic activities (PTP-1B and α-glycosidase), and antioxidant activity (ABTS and DPPH) as indicated markers, the extraction conditions of the prescription Kursi Wufarikun Ziyabit (KWZ) were optimized by response surface methodology (RSM). Independent variables were ethanol concentration, extraction temperature, solid-to-solvent ratio, and extraction time. The result of RSM analysis showed that the four variables investigated have a significant effect (p<0.05) for Y1, Y2, Y3, Y4, and Y5 with R2 value of 0.9120, 0.9793, 0.9076, 0.9125, and 0.9709, respectively. Optimal conditions for the highest extraction yield of 39.28%, PTP-1B inhibition rate of 86.21%, α-glycosidase enzymes inhibition rate of 96.56%, and ABTS inhibition rate of 77.38% were derived at ethanol concentration 50.11%, extraction temperature 72.06°C, solid-to-solvent ratio 1 : 22.73 g/mL, and extraction time 2.93 h. On the basis of total polyphenol content of 48.44% in this optimal condition, the quantitative analysis of effective part of KWZ was characterized via UPLC method, 12 main components were identified by standard compounds, and all of them have shown good regression within the test ranges and the total content of them was 11.18%

    Quality Evaluation of the Traditional Medicine Majun Mupakhi ELA via Chromatographic Fingerprinting Coupled with UHPLC-DAD-Quadrupole-Orbitrap-MS and the Antioxidant Activity In Vitro

    Get PDF
    By merging a high-performance liquid chromatography diode array detector (HPLC-DAD) method with high-performance thin-layer chromatography (HPTLC), an assay was developed for chemical fingerprinting and quantitative analysis of traditional medicine Majun Mupakhi ELA (MME), and constituent compounds were identified using HPLC coupled with UHPLC-DAD-Quadrupole-Orbitrap-MS method. In addition, the antioxidant capacity of MME was assessed based on the ability of components to scavenge radicals using in vitro method. Using a HPLC-DAD method with HPTLC easily validated the chemical fingerprinting results and quantified three characteristic components, namely, gallic acid (1), daidzein (2), and icariin (3), in commercial MMEs. The three compounds presented excellent regression values (R2=0.9999) in the ranges of the test and the method recovery was in the range from 100.49% to 100.68%. The fingerprints had 27 common characteristic peaks, of which 13 were verified by rapid UHPLC-DAD-Q-Orbitrap-MS analysis. In vitro antioxidant assays rapidly assessed and contrasted antioxidant activity or the free radical scavenging activity of the main polyphenolic classes in MMEs, and the antioxidant capacity was mostly affected by the presence of gallic acid. Thus, this study establishes a powerful and meaningful approach for MME quality control and for assessing in vitro antioxidant activity

    2-n-Butyl-1,2-benzisothia­zol-3(2H)-one 1,1-dioxide

    Get PDF
    The crystal packing of the title compound, C11H13NO3S, exhibits weak inter­molecular C—H⋯O hydrogen bonding, which links mol­ecules related by translation along the b axis into chains, and π–π inter­actions [centroid–centroid distance of 3.778 (2) Å between benzene rings]

    7-Nitro­quinazolin-4(3H)-one

    Get PDF
    In the crystal structure of the title compound, C8H5N3O3, inter­molecular N—H⋯O hydrogen bonds link mol­ecules into centrosymmetric dimers. These dimers are, in turn, linked though weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds and π–π stacking inter­actions, with centroid–centroid distances of 3.678 (3) Å, into a three-dimensional network

    Anti-diabetic Effect of Punica granatum Flower Polyphenols Extract in Type 2 Diabetic Rats: Activation of Akt/GSK-3β and Inhibition of IRE1α-XBP1 Pathways

    Get PDF
    Type 2 diabetes mellitus (T2DM) is the most common type of diabetes with more than hundreds of millions of patients worldwide. However, the medicines for treatment of T2DM are very limited. In China, Punica granatum L. flower (PGF) has been used as an anti-diabetic herb in the herbal medicine. The activity involves in improvement of insulin sensitivity. However, the underlying mechanism of action is elusive. The current study was designed to address this issue by investigating the effect of polyphenols extract of PGF in diabetic rats. A rat model was orally administrated with PGF polyphenols extract at doses of 50 and 100 mg/kg for 4 weeks. Insulin sensitivity was improved as indicated by oral glucose tolerance test (OGTT), insulin tolerance test (ITT) and homeostasis model assessment of insulin resistance (HOMA-IR). At the molecular level, insulin signaling activity was improved with an elevation in insulin-stimulated phosphorylation of insulin receptor substrate (IRS-1), Akt and GSK-3β. Endoplasmic reticulum (ER) stress signals including phosphorylation of inositol-requiring kinase1 (IRE1) and activation of X box binding protein (XBP-1) splicing were decreased by the PGF treatment. Expressions of IRE1α, XBPs, and CHOP were all decreased by PGF. Blood lipid profile, liver glycogen content and antioxidant status were improved by PGF in the rats. The observations suggest that PGF is able to lower glucose levels in T2DM rats by improving the insulin resistance. The mechanism is likely related to the activation of Akt-GSK3β signaling pathway and inhibition of ER stress

    Repurposing of Rutan showed effective treatment for COVID-19 disease

    Get PDF
    Previously, from the tannic sumac plant (Rhus coriaria), we developed the Rutan 25 mg oral drug tablets with antiviral activity against influenza A and B viruses, adenoviruses, paramyxoviruses, herpes virus, and cytomegalovirus. Here, our re-purposing study demonstrated that Rutan at 25, 50, and 100 mg/kg provided a very effective and safe treatment for COVID-19 infection, simultaneously inhibiting two vital enzyme systems of the SARS-CoV-2 virus: 3C-like proteinase (3CLpro) and RNA-dependent RNA polymerase (RdRp). There was no drug accumulation in experimental animals’ organs and tissues. A clinical study demonstrated a statistically significant decrease in the C-reactive protein and a reduction of the viremia period. In patients receiving Rutan 25 mg (children) and 100 mg (adults), the frequency of post-COVID-19 manifestations was significantly less than in the control groups not treated with Rutan tablets. Rutan, having antiviral activity, can provide safe treatment and prevention of COVID-19 in adults and children.Clinical Trial RegistrationClinicalTrials.gov, ID NCT05862883

    Novel Furocoumarin Derivatives Stimulate Melanogenesis in B16 Melanoma Cells by Up-Regulation of MITF and TYR Family via Akt/GSK3β/β-Catenin Signaling Pathways

    No full text
    The extracts of Ficuscarica L. and Psoralen corylifolia L. are traditional Uygur medicines for the treatment of vitiligo, and its active ingredients furocoumarins, were are found to be the most effective agents against this skin disorder nowadays. Therefore, a series of novel easter derivatives (8a–8p) of furocoumarin were designed and synthesized based on our previous research to improve this activity in the present study. The synthesized derivatives were biologically evaluated for melanin synthesis in murine B16 cells and the SAR (structure-activity relationship) was summarized. Eight derivatives were more potent than positive control (8-MOP, 8-methoxypsoralan), especially compounds 8n (200%) and 8o (197%), which were nearly 1.5-fold potency when compared with 8-MOP (136%). Furthermore, the signaling pathway by which 8n activates the melanin biosynthesis was defined. Our results showed that it not only elevated the melanin content, but also stimulated the activity of tyrosinasein a concentration-dependent manner. Increasing of phosphorylation of Akt (also named PKB, protein kinase B) and non-activated GSK3β (glycogen synthase kinase 3 beta), which inhibited the degradation of β-catenin were observed through Western blot analysis. The accumulation of β-catenin probably led to the activation of transcription of MITF (microphthalmia-associated transcription factor) and TYR (tyrosinase) family, as well as the subsequent induction of melanin synthesis

    Anti-inflammatory effect of pomegranate flower in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages

    No full text
    Context: Punica granatum L (Punicaceae) flower is an important diabetes treatment in oriental herbal medicine. Objective: This study investigates the inflammation effects of pomegranate flower (PFE) ethanol extract in LPS-induced RAW264.7 cells. Materials and methods: PFE (10, 25, 50, 100 μg/mL) was applied to 1 μg/mL LPS-induced RAW 264.7 macrophages in vitro. Levels of nitric oxide (NO), prostaglandin E2 (PGE2) and pro-inflammatory cytokines interleukin (IL)-1β (IL-1β), interleukin (IL)-6 (IL-6) and tumor necrosis factor (TNF-α) in the supernatant fraction were determined using enzyme-linked immunosorbent assay (ELISA). Expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), phosphorylation of mitogen-activated protein kinase (MAPK) subgroups extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and P38, as well as nuclear factor-κB (NF-κB) activation in extracts were detected via Western blot. Results: 10–100 μg/mL PFE decreased the production of NO (IC50 value = 31.8 μg/mL), PGE2 (IC50 value = 54.5 μg/mL), IL-6 (IC50 value = 48.7 μg/mL), IL-1β (IC50 value = 71.3 μg/mL) and TNF-α (IC50 value = 62.5 μg/mL) in LPS-stimulated RAW 264.7 cells significantly. A mechanism-based study showed that phosphorylation of ERK1/2, p38, JNK and translocation of the NF-B p65 subunit into nuclei were inhibited by the PFE treatment. Discussion and conclusion: These results show that PFE produced potential anti-inflammatory effect through modulating the synthesis of several mediators and cytokines involved in the inflammatory process

    Optimization of ultrasound-assisted extraction of sheep abomasum protein concentrates by response surface methodology and evaluation of their properties

    No full text
    Abstract The aim of this study was to extract sheep abomasum protein concentrates (SAPC) by ultrasound-assisted extraction (UAE) and to investigate the properties of SAPC. Response surface methodology and Box-Behnken design were applied to determine the optimal parameters for UAE. The maximum water-soluble protein concentration was 320.5 mg protein/g dry raw material under the optimal conditions with ultrasonic treatment time of 28 min, ultrasonic power of 450 W, liquid/solid ratio of 25 mL/g, and pH of 10. Compare with conventional extraction method (CEM), the UAE not only provided the higher protein concentration and yield but also required much shorter extraction times. Additionally, the SAPC obtained by UAE demonstrated better solubility, emulsifying properties, foaming properties and oil holding capacity as compared to CEM. However, use of the UAE method did not significantly increase the water holding capacity of SAPC

    Rapid Quantification and Quantitation of Alkaloids in Xinjiang Fritillaria by Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry

    No full text
    The Fritillaria genus, including different kinds of medicinal and edible plants belonging to the Liliaceae family which have the function of treating and relieving a cough and eliminating phlegm, is widely planted in Xinjiang (China). There are few comprehensive studies reporting on the characterization of the chemical constituents of Fritillaria from Xinjiang, and to date, no work describing the quantitative differences between the components in Fritillaria from Xinjiang and related species. The purpose of this study was to develop qualitative and quantitative analytical methods by Ultra Performance Liquid Chromatography-Quadrupole Time-of-flight Mass Spectrometry (UPLC-QTOF-MS) for the rapid quantification and quantitation of alkaloids in wild and cultivated Xinjiang Fritillaria, which could be used in the quality control of medicine based on this natural herb. Using the UPLC-QTOF-MS method, the chemical constituents of Xinjiang Fritillaria were identified by fragmentation information and retention behavior, and were compared to reference standards. Furthermore, a quantitative comparision of four major alkaloids in wild and cultivated Xinjiang Fritillaria was conducted by determining the content of Sipeimine-3β-d-glucoside, Sipeimine, Peimisine, and Yibeinoside A, respectively. A total of 89 characteristic peaks, including more than 40 alkaloids, were identified in the chromatographic results of Fritillaria. Four main alkaloids were quantified by using a validated method based on UPLC-QTOF-MS. The relative contents of Sipeimine-3β-d-glucoside, Sipeimine, Peimisine, and Yibeinoside A varied from 0.0013%~0.1357%, 0.0066%~0.1218%, 0.0033%~0.0437%, and 0.0019%~0.1398%, respectively. A rough separation of wild and cultivated Fritillaria could be achieved by the cluster analysis method
    corecore