16 research outputs found
New directions for Artificial Intelligence (AI) methods in optimum design
Developments and applications of artificial intelligence (AI) methods in the design of structural systems is reviewed. Principal shortcomings in the current approach are emphasized, and the need for some degree of formalism in the development environment for such design tools is underscored. Emphasis is placed on efforts to integrate algorithmic computations in expert systems
Applications of artificial neural nets in structural mechanics
A brief introduction to the fundamental of Neural Nets is given, followed by two applications in structural optimization. In the first case, the feasibility of simulating with neural nets the many structural analyses performed during optimization iterations was studied. In the second case, the concept of using neural nets to capture design expertise was studied
Reduced complexity structural modeling for automated airframe synthesis
A procedure is developed for the optimum sizing of wing structures based on representing the built-up finite element assembly of the structure by equivalent beam models. The reduced-order beam models are computationally less demanding in an optimum design environment which dictates repetitive analysis of several trial designs. The design procedure is implemented in a computer program requiring geometry and loading information to create the wing finite element model and its equivalent beam model, and providing a rapid estimate of the optimum weight obtained from a fully stressed design approach applied to the beam. The synthesis procedure is demonstrated for representative conventional-cantilever and joined wing configurations
Structural damage assessment as an identification problem
Damage assessment of structural assemblies is treated as an identification problem. A brief review of identification methods is first presented with particular focus on the output error approach. The use of numerical optimization methods in identifying the location and extent of damage in structures is studied. The influence of damage on eigenmode shapes and static displacements is explored as a means of formulating a measure of damage in the structure. Preliminary results obtained in this study are presented and special attention is directed at the shortcomings associated with the nonlinear programming approach to solving the optimization problem
Sensitivity of control-augmented structure obtained by a system decomposition method
The verification of a method for computing sensitivity derivatives of a coupled system is presented. The method deals with a system whose analysis can be partitioned into subsets that correspond to disciplines and/or physical subsystems that exchange input-output data with each other. The method uses the partial sensitivity derivatives of the output with respect to input obtained for each subset separately to assemble a set of linear, simultaneous, algebraic equations that are solved for the derivatives of the coupled system response. This sensitivity analysis is verified using an example of a cantilever beam augmented with an active control system to limit the beam's dynamic displacements under an excitation force. The verification shows good agreement of the method with reference data obtained by a finite difference technique involving entire system analysis. The usefulness of a system sensitivity method in optimization applications by employing a piecewise-linear approach to the same numerical example is demonstrated. The method's principal merits are its intrinsically superior accuracy in comparison with the finite difference technique, and its compatibility with the traditional division of work in complex engineering tasks among specialty groups