2 research outputs found

    In vivo evaluation by oral administration of chitosan combined with bioactive glass against cadmium-induced toxicity in rats

    No full text
    International audienceBioactive glass and chitosan are biomaterials widely used for orthopedic applications, notably as bone grafts. Although these biomaterials show promising therapeutic properties, no research has yet examined their potential for oral administration in soft tissue protection, particularly against metal toxicity. The aim of our study was to evaluate the potential of chitosan from cuttlefish (CHS) bone combined with bioactive glass (BG) against Cadmium-induced toxicity in rats. Cadmium (Cd), a heavy metal that accumulates in tissues, causes various disorders. Experiments were carried out on rats intoxicated acutely by oral administration of Cd (20 mg/kg body weight) and/or concomitantly with oral administration of CHS/BG (100 mg/kg body weight) for 7 days. Using pathophysiological and biochemical tests, we evaluated the detoxifying effect of orally administered CHS/BG against Cd toxicity. Our results showed, for the first time, a significant detoxifying effect of CHS/BG against Cd-induced toxicity in rats. Treatment with CHS/BG protected rats against the harmful effects of Cd by reducing lipid peroxidation levels and enhancing antioxidant enzyme activities. In addition, it helped restore phosphocalcic balance and protect liver, kidney and brain function. Remarkably, it also reduced Cd levels in the liver, kidneys and brain, as well as in the bones of rats. These results show that oral administration of CHS/BG has a strong therapeutic potential on tissues through detoxification of cadmium-exposed rats

    Gut Microbiome-Mediated Mechanisms in Alleviating Opioid Addiction with Aqueous Extract of <i>Anacyclus pyrethrum</i>

    No full text
    The escalating rates of morbidity and mortality associated with opioid use disorder (OUD) have spurred a critical need for improved treatment outcomes. This study aimed to investigate the impact of prolonged exposure to Fentanyl, a potent opioid, on behavior, biochemical markers, oxidative stress, and the composition of the gut microbiome. Additionally, we sought to explore the therapeutic potential of Anacyclus pyrethrum in mitigating the adverse effects of Fentanyl withdrawal. The study unveiled that chronic Fentanyl administration induced a withdrawal syndrome characterized by elevated cortisol levels (12.09 mg/mL, compared to 6.3 mg/mL for the control group). This was accompanied by heightened anxiety, indicated by a reduction in time spent and entries made into the open arm in the Elevated Plus Maze Test, as well as depressive-like behaviors, manifested through increased immobility time in the Forced Swim Test. Additionally, Fentanyl exposure correlated with decreased gut microbiome density and diversity, coupled with heightened oxidative stress levels, evidenced by elevated malondialdehyde (MDA) and reduced levels of catalase (CAT) and superoxide dismutase (SOD). However, both post- and co-administration of A. pyrethrum exhibited substantial improvements in these adverse effects, effectively alleviating symptoms associated with OUD withdrawal syndrome and eliciting positive influences on gut microbiota. In conclusion, this research underscores the therapeutic potential of A. pyrethrum in managing Fentanyl withdrawal symptoms. The findings indicate promising effects in alleviating behavioral impairments, reducing stress, restoring gut microbiota, and mitigating oxidative stress, offering valuable insights for addressing the challenges of OUD treatment
    corecore