3 research outputs found

    The Effects of the Size and the Doping Concentration on the Power Factor of n‑type Lead Telluride Nanocrystals for Thermoelectric Energy Conversion

    No full text
    For the first time, we demonstrate a successful synthesis of colloidal n-type lead telluride nanocrystals doped with iodine. By tuning the reaction time and iodine concentration in the precursor solution, nanocrystals with different sizes and doping concentrations are synthesized. The Seebeck coefficient and electrical conductivity of the nanocrystals are measured on nanocrystal thin films fabricated by dip-coating glass substrates in the nanocrystals solution. Investigations on the influence of size and doping concentration on the electrical properties have been performed. The results show that the size of the nanocrystals significantly influences the electrical conductivity but not the Seebeck coefficient of nanocrystal films, while higher doping concentration leads to lower Seebeck coefficient but higher electrical conductivity in the nanocrystal films. Proof-of-concept thin-film thermoelectric modules are also fabricated using both p-type and n-type PbTe nanocrystals for the conversion of thermal energy into electrical energy

    Structure and Thermoelectric Properties of Spark Plasma Sintered Ultrathin PbTe Nanowires

    No full text
    Solution-synthesized thermoelectric nanostructured materials have the potential to have lower cost and higher performance than materials synthesized by solid-state methods. Herein we present the synthesis of ultrathin PbTe nanowires, which are compressed by spark plasma sintering at various temperatures in the range of 405–500 °C. The resulting discs possess grains with sizes of 5–30 μm as well as grains with sizes on the order of the original 12 nm diameter PbTe nanowires. This micro- and nanostructure leads to a significantly reduced thermal conductivity compared to bulk PbTe. Careful electron transport analysis shows suppressed electrical conductivity due to increased short-range and ionized defect scatterings, while the Seebeck coefficient remains comparable to the bulk value. The PbTe nanowire samples are found unintentionally p-type doped to hole concentrations of 2.16–2.59 × 10<sup>18</sup> cm<sup>–3</sup>. The maximum figure of merit achieved in the unintentionally doped spark plasma sintered PbTe nanowires is 0.33 at 350 K, which is among the highest reported for unintentionally doped PbTe at low temperatures

    Electrochemical Effects in Thermoelectric Polymers

    No full text
    Conductive polymers such as PEDOT:PSS hold great promise as flexible thermoelectric devices. The thermoelectric power factor of PEDOT:PSS is small relative to inorganic materials because the Seebeck coefficient is small. Ion conducting materials have previously been demonstrated to have very large Seebeck coefficients, and a major advantage of polymers over inorganics is the high room temperature ionic conductivity. Notably, PEDOT:PSS demonstrates a significant but short-term increase in Seebeck coefficient which is attributed to a large ionic Seebeck contribution. By controlling whether electrochemistry occurs at the PEDOT:PSS/electrode interface, the duration of the ionic Seebeck enhancement can be controlled, and a material can be designed with long-lived ionic Seebeck enhancements
    corecore