33 research outputs found

    Analysis of five deep-sequenced trio-genomes of the Peninsular Malaysia Orang Asli and North Borneo populations

    Get PDF
    BackgroundRecent advances in genomic technologies have facilitated genome-wide investigation of human genetic variations. However, most efforts have focused on the major populations, yet trio genomes of indigenous populations from Southeast Asia have been under-investigated.ResultsWe analyzed the whole-genome deep sequencing data (30x) of five native trios from Peninsular Malaysia and North Borneo, and characterized the genomic variants, including single nucleotide variants (SNVs), small insertions and deletions (indels) and copy number variants (CNVs). We discovered approximately 6.9 million SNVs, 1.2 million indels, and 9000 CNVs in the 15 samples, of which 2.7% SNVs, 2.3% indels and 22% CNVs were novel, implying the insufficient coverage of population diversity in existing databases. We identified a higher proportion of novel variants in the Orang Asli (OA) samples, i.e., the indigenous people from Peninsular Malaysia, than that of the North Bornean (NB) samples, likely due to more complex demographic history and long-time isolation of the OA groups. We used the pedigree information to identify de novo variants and estimated the autosomal mutation rates to be 0.81x10(-8) - 1.33x10(-8), 1.0x10(-9) - 2.9x10(-9), and 0.001 per site per generation for SNVs, indels, and CNVs, respectively. The trio-genomes also allowed for haplotype phasing with high accuracy, which serves as references to the future genomic studies of OA and NB populations. In addition, high-frequency inherited CNVs specific to OA or NB were identified. One example is a 50-kb duplication in DEFA1B detected only in the Negrito trios, implying plausible effects on host defense against the exposure of diverse microbial in tropical rainforest environment of these hunter-gatherers. The CNVs shared between OA and NB groups were much fewer than those specific to each group. Nevertheless, we identified a 142-kb duplication in AMY1A in all the 15 samples, and this gene is associated with the high-starch diet. Moreover, novel insertions shared with archaic hominids were identified in our samples.ConclusionOur study presents a full catalogue of the genome variants of the native Malaysian populations, which is a complement of the genome diversity in Southeast Asians. It implies specific population history of the native inhabitants, and demonstrated the necessity of more genome sequencing efforts on the multi-ethnic native groups of Malaysia and Southeast Asia

    Concept for a Future Super Proton-Proton Collider

    Full text link
    Following the discovery of the Higgs boson at LHC, new large colliders are being studied by the international high-energy community to explore Higgs physics in detail and new physics beyond the Standard Model. In China, a two-stage circular collider project CEPC-SPPC is proposed, with the first stage CEPC (Circular Electron Positron Collier, a so-called Higgs factory) focused on Higgs physics, and the second stage SPPC (Super Proton-Proton Collider) focused on new physics beyond the Standard Model. This paper discusses this second stage.Comment: 34 pages, 8 figures, 5 table

    Epidemiological Survey of Grass Carp (Ctenopharyngodon idella) Reovirus in South China, and Genetic Variations of VP6 gene

    Get PDF
    To study the molecular biology characteristics, phylogenetic relationship, and status quo of grass carp reovirus (GCRV) prevalent isolates, we conducted an epidemiological survey in South China from 2012 to 2016. We sampled 126 fish collected from five provinces. Eight strains of GCRV were isolated and examined in order to understand their genetic characteristics and evolution regularity. The results showed three genotypes of GCRV, of which. Genotype Ⅱ was found to be the prevalent strain in South China. SDS-PAGE electrophoresis further suggested that all viruses possess 11 segments of dsRNA, which have typical characteristics of GCRV. Based on amino acid sequence phylogenetic tree of VP6 gene, all eight isolates belonged to genotype Ⅱ and had significant variations compared to genotype Ⅰ. Analysis of amino acid sequence showed that these two genotypes of GCRV had no immunological cross-reactions. These results indicated that genotype Ⅱ GCRV is an extensive pandemic, and revealed new genetic diversity in China

    Incidence of Gastric Neoplasms Arising from Autoimmune Metaplastic Atrophic Gastritis: A Systematic Review and Case Reports

    No full text
    Autoimmune metaplastic atrophic gastritis (AMAG) is associated with an increased risk of gastric neoplasms. This study aimed to systematically analyze the incidence rate of gastric cancer (GC), low-grade dysplasia (LGD) and type-1 gastric neuroendocrine tumor (gNETs) development in AMAG adults. Studies on AMAG patients reporting the incidence of gastric neoplasms was identified through a systematic search in PUBMED and EMBASE. Study quality was assessed using the Joanna Briggs Institute quality assessment tool. Incidence rates of GC, LGD and type-1 gNETs were examined by meta-analysis. Thirteen studies met eligibility criteria. Incidence rate of gastric cancer calculated from the pooled data was 0.14% per person-year in both single-center studies and national registration studies. Meta-analysis showed a relative risk of 11.05 (95% CI: 6.39–19.11) for gastric cancer development in AMAG patients. The calculated pooled gastric LGD and type-1 gNETs incidence rates were 0.52% and 0.83% per person-year, respectively. As for experience from our center, we presented three distinctive cases of gastric neoplasm arising from the background of AMAG. This study underscores the potential for malignant transformation of precancerous lesions and reiterates the importance of careful esophagogastroduodenoscopy screening

    The Development of the QM/MM Interface and Its Application for the on-the-fly QM/MM Nonadiabatic Dynamics in JADE Package: Theory, Implementation and Applications

    No full text
    Understanding the nonadiabatic dynamics of complex systems is a challenging task in computational photochemistry. Herein, we present an efficient and user-friendly quantum mechanics/molecular mechanics (QM/MM) interface to run on-the-fly nonadiabatic dynamics. Currently, this interface consists of an independent set of codes designed for general-purpose use. Herein, we demonstrate the ability and feasibility of the QM/MM interface by integrating it with our long-term developed JADE package. Tailored to handle nonadiabatic processes in various complex systems, especially condensed phases and protein environments, we delve into the theories, implementations, and applications of the on-the-fly QM/MM nonadiabatic dynamics. The QM/MM approach is established within the framework of the additive QM/MM scheme, employing electrostatic embedding, link-atom inclusion, and charge-redistribution schemes to treat the QM/MM boundary. Trajectory surface-hopping dynamics are facilitated using the fewest switches algorithm, encompassing classical and quantum treatments for nuclear and electronic motions, respectively. Finally, we report simulations of nonadiabatic dynamics for two typical systems: azomethane in water and the retinal chromophore PSB3 in a protein environment. Our results not only illustrate the power of the QM/MM program but also reveal the important roles of environmental factors in nonadiabatic processes

    Significant Impact of Deprotonated Status on the Photoisomerization Dynamics of Bacteriophytochrome Chromophore

    No full text
    We report that the photoinduced dynamics of the phytochrome chromophore is strongly dependent on the protonation/deprotonation states of the pyrrole ring. The on-the-fly surface hopping dynamics simulations were performed to study the photoisomerization of different protonation/deprotonation phytochrome chromophore models. The simulation results indicate that the deprotonations at the pyrrole rings significantly modify the photoinduced nonadiabatic dynamics, leading to distinctive population decay dynamics and different reaction channels. Such feature can be well explained by the formation of the different hydrogen bond network patterns. Therefore, the proper understanding of the photoisomerization mechanism of phytochrome chromophore must take the hydrogen bond network into account. This work provides the new insights into the photobiological functions of phytochrome chromophore and suggests the possible ideas to control of its photoconversion processes for further rational engineering in optical applications

    Transcriptome and Metabolome Analyses Provide Insights into the Flavonoid Accumulation in Peels of Citrus reticulata ‘Chachi’

    No full text
    The quality of Chinese medicinal materials depends on the content of bioactive components, which are affected by the environmental factors of different planting regions. In this research, integrated analysis of the transcriptome and metabolome of C. reticulata ‘Chachi’ was performed in two regions, and three orchards were included in the analysis. In total, only 192 compounds were found in fresh peels, and among 18 differentially accumulated flavonoid metabolites, 15 flavonoids were enriched in peels from the Xinhui planting region. In total, 1228 genes were up-regulated in peels from Xinhui, including the CHS and GST genes, which are involved in the salt stress response. Overall, based on the correlation analysis of flavonoid content and gene expression in peels of C. reticulata ‘Chachi’, we concluded that the authenticity of the GCRP from Xinhui may be closely related to the higher content of naringin and narirutin, and the increase in the content of these may be due to the highly saline environment of the Xinhui region

    An Interpretable Radiomics Model Based on Two-Dimensional Shear Wave Elastography for Predicting Symptomatic Post-Hepatectomy Liver Failure in Patients with Hepatocellular Carcinoma

    No full text
    Objective: The aim of this study was to develop and validate an interpretable radiomics model based on two-dimensional shear wave elastography (2D-SWE) for symptomatic post-hepatectomy liver failure (PHLF) prediction in patients undergoing liver resection for hepatocellular carcinoma (HCC). Methods: A total of 345 consecutive patients were enrolled. A five-fold cross-validation was performed during training, and the models were evaluated in the independent test cohort. A multi-patch radiomics model was established based on the 2D-SWE images for predicting symptomatic PHLF. Clinical features were incorporated into the models to train the clinical–radiomics model. The radiomics model and the clinical–radiomics model were compared with the clinical model comprising clinical variables and other clinical predictive indices, including the model for end-stage liver disease (MELD) score and albumin–bilirubin (ALBI) score. Shapley Additive exPlanations (SHAP) was used for post hoc interpretability of the radiomics model. Results: The clinical–radiomics model achieved an AUC of 0.867 (95% CI 0.787–0.947) in the five-fold cross-validation, and this score was higher than that of the clinical model (AUC: 0.809; 95% CI: 0.715–0.902) and the radiomics model (AUC: 0.746; 95% CI: 0.681–0.811). The clinical–radiomics model showed an AUC of 0.822 in the test cohort, higher than that of the clinical model (AUC: 0.684, p = 0.007), radiomics model (AUC: 0.784, p = 0.415), MELD score (AUC: 0.529, p < 0.001), and ALBI score (AUC: 0.644, p = 0.016). The SHAP analysis showed that the first-order radiomics features, including first-order maximum 64 × 64, first-order 90th percentile 64 × 64, and first-order 10th percentile 32 × 32, were the most important features for PHLF prediction. Conclusion: An interpretable clinical–radiomics model based on 2D-SWE and clinical variables can help in predicting symptomatic PHLF in HCC

    Stiffness on shear wave elastography as a potential microenvironment biomarker for predicting tumor recurrence in HBV-related hepatocellular carcinoma

    No full text
    Abstract Background To explore the pathologic basis and prognostic value of tumor and liver stiffness measured pre-operatively by two-dimensional shear wave elastography (2D-SWE) in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) patients who undergo hepatic resection. Methods A total of 191 HBV-infected patients with solitary resectable HCC were prospectively enrolled. The stiffness of intratumoral tissue, peritumoral tissue, adjacent liver tissue, and distant liver tissue was evaluated by 2D-SWE. The correlations between stiffness and pathological characteristics were analyzed in 114 patients. The predictive value of stiffness for recurrence-free survival (RFS) was evaluated, and Cutoff Finder was used for determining optimal cut-off stiffness values. Cox proportional hazards analysis was used to identify independent predictors of RFS. Results Pathologically, intratumoral stiffness was associated with stroma proportion and microvascular invasion (MVI) while peritumoral stiffness was associated with tumor size, capsule, and MVI. Adjacent liver stiffness was correlated with capsule and liver fibrosis stage while distant liver stiffness was correlated with liver fibrosis stage. Peritumoral stiffness, adjacent liver stiffness, and distant liver stiffness were all correlated to RFS (all p 49.4 kPa) (HR = 1.822, p = 0.023) and higher adjacent liver stiffness (> 24.1 kPa) (HR = 1.792, p = 0.048) were significant independent predictors of worse RFS, along with tumor size and MVI. The nomogram based on these variables showed a C-index of 0.77 for RFS prediction. Conclusions Stiffness measured by 2D-SWE could be a tumor microenvironment and tumor invasiveness biomarker. Peritumoral stiffness and adjacent liver stiffness showed important values in predicting tumor recurrence after curative resection in HBV-related HCC. Clinical relevance statement Tumor and liver stiffness measured by two-dimensional shear wave elastography serve as imaging biomarkers for predicting hepatocellular carcinoma recurrence, reflecting biological behavior and tumor microenvironment. Key points • Stiffness measured by two-dimensional shear wave elastography is a useful biomarker of tumor microenvironment and invasiveness. • Higher stiffness indicated more aggressive behavior of hepatocellular carcinoma. • The study showed the prognostic value of peritumoral stiffness and adjacent liver stiffness for recurrence-free survival. • The nomogram integrating peritumoral stiffness, adjacent liver stiffness, tumor size, and microvascular invasion showed a C-index of 0.77. Graphical Abstrac
    corecore