14 research outputs found

    Constraints on Inner Disk Evolution Timescales: A Disk Census of the eta Chamaeleontis Young Cluster

    Full text link
    We present new L' (3.8-micron) observations of stars in the nearby (~97 pc) young (~6 Myr) compact cluster around eta Chamaeleontis, obtained with the European Southern Observatory's Very Large Telescope in Paranal, Chile. Our data, combined with J,H, Ks photometry from the 2-Micron All Sky Survey, reveal that only two of the 12 members surveyed harbor L'-band excesses consistent with optically thick inner disks; both are also likely accretors. Intriguingly, two other stars with possible evidence for on-going accretion, albeit at very low rates, do not show significant infrared excess: this may imply substantial grain growth and/or partial clearing of the inner disk region, as expected in planet formation scenarios. Our findings suggest that eta Cha stars are in an epoch when disks are rapidly evolving, perhaps due to processes related to planet building, and provide further constraints on inner disk lifetimes.Comment: accepted for publication in Astrophysical Journal Letter

    First Evidence of a Precessing Jet Excavating a Protostellar Envelope

    Get PDF
    We present new, sensitive, near-infrared images of the Class I protostar, Elias 29, in the Ophiuchus cloud core. To explore the relationship between the infall envelope and the outflow, narrowband H2 1-0 S(1), Br-gamma, and narrowband K-continuum filters were used to image the source with the Wide-Field Infrared Camera on the Hale 5m telescope and with Persson's Auxiliary Nasmyth Infrared Camera on the Baade 6.5 m telescope. The source appears as a bipolar, scattered light nebula, with a wide opening angle in all filters, as is typical for late-stage protostars. However, the pure H2 emission-line images point to the presence of a heretofore undetected precessing jet. It is argued that high-velocity, narrow, precessing jets provide the mechanism for creating the observed wide-angled outflow cavity in this source.Comment: 11 pages, 1 figure, 1 tabl

    A Near-Infrared L Band Survey of the Young Embedded Cluster NGC 2024

    Full text link
    We present the results of the first sensitive L band (3.4 micron) imaging study of the nearby young embedded cluster NGC 2024. Two separate surveys of the cluster were acquired in order to obtain a census of the circumstellar disk fraction in the cluster. From an analysis of the JHKL colors of all sources in our largest area, we find an infrared excess fraction of > 86%. The JHKL colors suggest that the infrared excesses arise in circumstellar disks, indicating that the majority of the sources which formed in the NGC 2024 cluster are currently surrounded by, and likely formed with circumstellar disks. The excess fractions remain very high, within the errors, even at the faintest L magnitudes from our deeper surveys suggesting that disks form around the majority of the stars in very young clusters such as NGC 2024 independent of mass. From comparison with published JHKL observations of Taurus, we find the K - L excess fraction in NGC 2024 to be consistent with a high initial incidence of circumstellar disks in both NGC 2024 and Taurus. Because NGC 2024 represents a region of much higher stellar density than Taurus, this suggests that disks may form around most of the YSOs in star forming regions independent of environment. We find a relatively constant JHKL excess fraction with increasing cluster radius, indicating that the disk fraction is independent of location in the cluster. In contrast, the JHK excess fraction increases rapidly toward the central region of the cluster, and is most likely due to contamination of the K band measurements by bright nebulosity in the central regions of the cluster. We identify 45 candidate protostellar sources in the central regions of the NGC 2024 cluster, and find a lower limit on the protostellar phase of early stellar evolution of 0.4 - 1.4 X 10^5 yr, similar to that in Taurus.Comment: 37 pages, 8 figures, 3 tables, To appear in the Astronomical Journa

    A Disk Census for Young Brown Dwarfs

    Full text link
    Recent surveys have identified sub-stellar objects down to planetary masses in nearby star-forming regions. Reliable determination of the disk frequency in young brown dwarfs is of paramount importance to understanding their origin. Here we report the results of a systematic study of infrared L'-band (3.8-micron) disk excess in ~50 spectroscopically confirmed objects near and below the sub-stellar boundary in several young clusters. Our observations, using the ESO Very Large Telescope, Keck I and the NASA Infrared Telescope Facility, reveal that a significant fraction of brown dwarfs harbor disks at a very young age. Their inner disk lifetimes do not appear to be vastly different from those of disks around T Tauri stars. Our findings are consistent with the hypothesis that sub-stellar objects form via a mechanism similar to solar-mass stars.Comment: accepted for publication in The Astronomical Journa

    Mid-Infrared Observations of Class I/Flat-Spectrum Systems in Six Nearby Molecular Clouds

    Get PDF
    We have obtained new mid-infrared observations of 65 Class I/Flat-Spectrum (F.S.) objects in the Perseus, Taurus, Chamaeleon I/II, Rho Ophiuchi, and Serpens dark clouds. We detected 45/48 (94%) of the single sources, 16/16 (100%) of the primary components, and 12/16 (75%) of the secondary/triple components of the binary/multiple objects surveyed. The composite spectral energy distributions (SEDs) for all of our sample sources are either Class I or F.S., and, in 15/16 multiple systems, at least one of the individual components displays a Class I or F.S. spectral index. However, the occurrence of mixed pairings, such as F.S. with Class I, F.S. with Class II, and, in one case, F.S. with Class III, is surprisingly frequent. Such behaviour is not consistent with that of multiple systems among T Tauri stars (TTS), where the companion of a classical TTS also tends to be a classical TTS, although other mixed pairings have been previously observed among Class II objects. Based on an analysis of the spectral indices of the individual binary components, there appears to be a higher proportion of mixed Class I/F.S. systems (65-80%) than that of mixed Classical/Weak-Lined TTS (25-40%), demonstrating that the envelopes of Class I/ F.S. systems are rapidly evolving during this evolutionary phase. We report the discovery of a steep spectral index secondary companion to ISO-ChaI 97, detected for the first time via our mid-infrared observations. In our previous near- infrared imaging survey of binary/multiple Class I/F.S. sources, ISO-ChaI 97 appeared to be single. With a spectral index of Alpha >= 3.9, the secondary component of this system is a member of a rare class of very steep spectral index objects, those with Alpha > 3. Only three such objects have previously been reported, all of which are either Class 0 or Class I.Comment: 31 pages, 4 figures, 6 table

    A Mid-Infrared Study of the Young Stellar Population in the NGC 2024 Cluster

    Full text link
    We present the results of the first broadband 10.8 um survey of the NGC 2024 cluster. The mid-infrared data were combined with our previously published JHKL photometry in order to construct spectral energy distributions for all detected sources. The main scientific goals were to investigate the nature of the young stellar objects (YSOs) in the cluster, and to examine the efficiency of detecting circumstellar disk sources from near-infrared JHKL color-color diagrams. Out of 59 sources surveyed having K-band magnitudes K < 10.5, we detected 35 (~59%) at 10 um. Combining these detections, and upper limits for the non-detections, with existing JHKL data, we identify 1 Class I, 6 flat spectrum, 28 Class II and 5 Class III sources. We find a circumstellar disk fraction for NGC 2024 of ~85% +/- 15%, which confirms earlier published suggestions that the majority, if not all, of the stars in NGC 2024 formed with disks, and these disks still exist at the present time. In addition, all but one of the disk sources identified in our survey lie in the infrared excess region of the JHKL color-color diagram for the cluster. This demonstrates that JHKL color-color diagrams are extremely efficient in identifying YSOs with disks. Of the 14 sources with K - L colors suggestive of protostellar objects, \~29% are protostellar in nature, while ~7% are true Class I YSOs. This may be due to extinction producing very red K - L colors in Class II YSOs, thus making them appear similar in color to protostars. This suggests caution must be applied when estimating the sizes and lifetimes of protostellar populations within star forming regions based on K - L colors alone. Finally, we calculate the luminosities of the Class II YSOs in NGC 2024, rho Oph and Taurus and discuss the results.Comment: 30 pages, 8 figures, paper to appear in March A

    Circumstellar Disks in the IC 348 Cluster

    Full text link
    We report the results of the first sensitive L-band (3.4 micron) imaging survey of the young IC 348 cluster in Perseus. In conjunction with previously acquired JHK (1.25, 1.65, 2.2 micron) observations, we use L-band data to obtain a census of the circumstellar disk population to m_K=m_L<=12.0 in the central 110 square arcmin region of the cluster. An analysis of the JHKL colors of 107 sources indicates that 65% +/- 8% of the cluster membership possesses (inner) disks. This fraction is lower than those (86% +/- 8% and 80% +/- 7%) obtained from similar JHKL surveys of the younger NGC 2024 and Trapezium clusters, suggesting that the disk fraction in clusters decreases with cluster age. Sources with circumstellar disks in IC 348 have a median age of 0.9 Myr, while the diskless sources have a median age of 1.4 Myr, for a cluster distance of 320 pc. Although the difference in the median ages between the two populations is only marginally significant, our results suggest that over a timescale of 2 - 3 Myr, more than a third of the disks in the IC 348 cluster disappear. Moreover, we find that at a very high confidence level, the disk fraction is a function of spectral type. All stars earlier than G appear diskless, while stars with spectral types G and later have a disk fraction ranging between 50% - 67%, with the latest type stars having the higher disk fraction. This suggests that the disks around stars with spectral types G and earlier have evolved more rapidly than those with later spectral types. The L-band disk fraction for sources with similar ages in both IC 348 and Taurus is the same, within the errors, suggesting that, at least in clusters with no O stars, the disk lifetime is independent of environment.Comment: 25 pages, 4 figures. Paper to appear in April A

    Deficit of wide binaries in the eta Chamaeleontis young cluster

    Full text link
    We have carried out a sensitive high-resolution imaging survey of stars in the young (6-8 Myr), nearby (97 pc) compact cluster around eta Chamaeleontis to search for stellar and sub-stellar companions. Given its youth and proximity, any sub-stellar companions are expected to be luminous, especially in the near infrared, and thus easier to detect next to their parent stars. Here, we present VLT/NACO adaptive optics imaging with companion detection limits for 17 eta Cha cluster members, and follow-up VLT/ISAAC near-infrared spectroscopy for companion candidates. The widest binary detected is ~0.2", corresponding to the projected separation 20 AU, despite our survey being sensitive down to sub-stellar companions outside 0.3", and planetary mass objects outside 0.5". This implies that the stellar companion probability outside 0.3" and the brown dwarf companion probability outside 0.5" are less than 0.16 with 95% confidence. We compare the wide binary frequency of eta Cha to that of the similarly aged TW Hydrae association, and estimate the statistical likelihood that the wide binary probability is equal in both groups to be < 2e-4. Even though the eta Cha cluster is relatively dense, stellar encounters in its present configuration cannot account for the relative deficit of wide binaries. We thus conclude that the difference in wide binary probability in these two groups provides strong evidence for multiplicity properties being dependent on environment. In two appendices we derive the projected separation probability distribution for binaries, used to constrain physical separations from observed projected separations, and summarize statistical tools useful for multiplicity studies.Comment: Accepted by ApJ. 13 pages, 10 figure
    corecore