54 research outputs found

    Investigation of the Lipid-Lowering Effect of Vitamin C Through GSK-3β/β-Catenin Signaling in Zebrafish

    Get PDF
    Vitamin C (VC) is an essential nutrient for most fish species because of the absence of L-gulonolactone oxidase in the bodies of fish. VC plays a significant role in maintaining the physiological functions and in improving the growth performance, immunity, and survival of fish. In this study, zebrafish (Danio rerio) were treated with 8.2, 509.6, and 1007.5 mg/kg VC diets for 2 weeks, and the muscle samples were collected for gene expression analysis and biochemical index analysis. The results indicated that 509.6 and 1007.5 mg/kg VC diets inhibited glycogen synthase kinase-3β (GSK-3β) expression and induced the expression of β-catenin in the muscle of zebrafish. The mRNA expression of CCAAT/enhancer-binding protein α (C/EBPα) and fatty acid synthase (FAS), FAS activity, and the content of glycerol and triglyceride (TG) were decreased in the muscle by 509.6 and 1007.5 mg/kg VC diets. In addition, GSK-3β RNA interference was observed in zebrafish fed with 8.2 and 1007.5 mg/kg VC diets. It was found that GSK-3β RNA interference induced the mRNA expression of β-catenin but decreased the mRNA expression of C/EBPα and FAS, FAS activity, as well as the content of glycerol and TG in the muscle of zebrafish. In ZF4 cells, the mRNA expression of GSK-3β, C/EBPα, and FAS was decreased, but β-catenin expression was increased by 0.1 and 0.5 mmol/L VC treatments in vitro. The glycerol and TG content, and FAS activity in ZF4 cells were decreased by 0.1 and 0.5 mmol/L VC treatments. Moreover, the result of western blot indicated that the protein expression level of GSK-3β was significantly decreased and that of β-catenin was significantly increased in ZF4 cells treated with 0.1 and 0.5 mmol/L VC. The results from in vivo and in vitro studies corroborated that VC exerted the lipid-lowering effect through GSK-3β/β-catenin signaling in zebrafish

    Ultrahigh Piezoelectric Performance through Synergistic Compositional and Microstructural Engineering

    Get PDF
    Piezoelectric materials enable the conversion of mechanical energy into electrical energy and vice-versa. Ultrahigh piezoelectricity has been only observed in single crystals. Realization of piezoelectric ceramics with longitudinal piezoelectric constant (d33) close to 2000 pC N–1, which combines single crystal-like high properties and ceramic-like cost effectiveness, large-scale manufacturing, and machinability will be a milestone in advancement of piezoelectric ceramic materials. Here, guided by phenomenological models and phase-field simulations that provide conditions for flattening the energy landscape of polarization, a synergistic design strategy is demonstrated that exploits compositionally driven local structural heterogeneity and microstructural grain orientation/texturing to provide record piezoelectricity in ceramics. This strategy is demonstrated on [001]PC-textured and Eu3+-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) ceramics that exhibit the highest piezoelectric coefficient (small-signal d33 of up to 1950 pC N–1 and large-signal d33* of ≈2100 pm V–1) among all the reported piezoelectric ceramics. Extensive characterization conducted using high-resolution microscopy and diffraction techniques in conjunction with the computational models reveals the underlying mechanisms governing the piezoelectric performance. Further, the impact of losses on the electromechanical coupling is identified, which plays major role in suppressing the percentage of piezoelectricity enhancement, and the fundamental understanding of loss in this study sheds light on further enhancement of piezoelectricity. These results on cost-effective and record performance piezoelectric ceramics will launch a new generation of piezoelectric applications

    SMA1, a homolog of the splicing factor Prp28, has a multifaceted role in miRNA biogenesis in Arabidopsis

    Get PDF
    MicroRNAs (miRNAs) are a class of small non-coding RNAs that repress gene expression. In plants, the RNase III enzyme Dicer-like (DCL1) processes primary miRNAs (pri-miRNAs) into miRNAs. Here, we show that SMALL1 (SMA1), a homolog of the DEADbox pre-mRNA splicing factor Prp28, plays essential roles in miRNA biogenesis in Arabidopsis. A hypomorphic sma1-1 mutation causes growth defects and reduces miRNA accumulation correlated with increased target transcript levels. SMA1 interacts with the DCL1 complex and positively influences primiRNA processing. Moreover, SMA1 binds the promoter region of genes encoding pri-miRNAs (MIRs) and is required for MIR transcription. Furthermore, SMA1 also enhances the abundance of the DCL1 protein levels through promoting the splicing of the DCL1 pre-mRNAs. Collectively, our data provide new insights into the function of SMA1/Prp28 in regulating miRNA abundance in plants

    The Design and Implementation of Smart Monitoring System for Large-Scale Railway Maintenance Equipment Cab Based on ZigBee Wireless Sensor Network

    No full text
    In recent years, organizations use IEEE 802.15.4 and ZigBee technology to deliver solution in variety areas including home environment monitoring. ZigBee technology has advantages on low-cost, low power consumption and self-forming. With the rapid expansion of the Internet, there is the requirement for remote monitoring large-scale railway maintenance equipment cab. This paper discusses the disadvantages of the existing smart monitoring system, and proposes a solution. A ZigBee wireless sensor network smart monitoring system and Wi-Fi network is integrated through a home gateway to increase the system flexibility. At the same time the home gateway cooperated with a pre- processing system provide a flexible user interface, and the security and safety of the smart monitoring system. To testify the efficiency of the proposed system, the temperature and humidity sensors and light sensors have developed and evaluated in the smart monitoring system

    The Implement of Hydraulic Control System for Large-Scale Railway Maintenance Equipment Based on PLC

    No full text
    Programmed Logic Controller (PLC) is the digital calculation operation system, which is specially designed for industrial working environment. This paper proposed the implement of hydraulic control system for large-scale railway maintenance equipment based on PLC. This implement pursued the purpose of accurate control of hydraulic working units of large-scale railway maintenance equipment. Large-scale railway maintenance equipment should always work in efficient statement. Focusing on this requirement, the reliability design of hardware for current leakage and impulse current which is proposed in the paper is necessary. This paper proposed Triple Modular Redundancy (TMR) for relative horizontal check of working units linking bridge. This paper also proposed the method to prevent the current leakage and impulse current. As for hydraulic valves, this paper proposed PID algorithm to realize the control of Analogue Closed-Loop

    Fault Detection for Large-Scale Railway Maintenance Equipment Base on Wireless Sensor Networks

    No full text
    Focusing on the fault detection application for large-scale railway maintenance equipment with the specialties of low-cost, energy efficiency, collecting data of the function units. This paper proposed energy efficiency, convenient installation fault detection application using Sigsbee wireless sensor networks, which Sigsbee is the most widely used protocol based on IEEE 802.15.4. This paper proposed a systematic application from hardware design using STM32F103 chips as processer, to software system. Fault detection application is the basic part of the fault diagnose system, wireless sensor nodes of the fault detection application with different kinds of sensors for verities function units communication by Sigsbee to collecting and sending basic working status data to the home gateway, then data will be sent to the fault diagnose system

    Fractal Characteristics, Multiple Bubbles, and Jump Anomalies in the Chinese Stock Market

    No full text
    To consider the jump problem of the Chinese stock market, this paper takes the CSI 300 Index from April 2005 to November 2015 as the research object, uses the rescaled range analysis (R/S analysis) method to examine the fractal characteristics of the Chinese stock market in the past ten years, and deduces the possibility of multiple bubbles in the Chinese stock market. Based on this, combined with the log-periodic power law (LPPL) model, the stock market bubbles are identified in different periods. The results show that China’s stock market has some anomalies in terms of positive bubbles, negative bubbles, and reverse bubbles, as well as the cross occurrence of reverse-negative bubbles. Besides, through a comparison with the major foreign stock markets, it is found that the fluctuation range of the Chinese stock market is much larger than that of the Dow Jones Industrial Average and the FTSE 100 indices in the same period and there are also more types of multibubbles, which is a connotative anomaly that makes the Chinese stock market different from other major stock markets. Furthermore, the bubble phenomenon in the Chinese stock market during the periods of 2005/4–2007/10 and 2015/6–2015/11 is studied, and it is found that there is a jump anomaly in the Chinese stock market. Finally, based on the above empirical analysis and the current state of the stock market, this paper provides some suggestions for improving the mechanism of the Chinese stock market

    A Multichannel THz Detector Using Integrated Bow-Tie Antennas

    No full text
    This paper presents a kind of a multichannel THz detector using lens-based bow-tie array. A hyperhemispherical silicon lens is employed to provide a focal plane; 8 bow-tie elements are arranged on the focal plane with careful design to show a performance of broadband, high gain, well compact, and easy assembling. These characteristics of the detector are preferred for detecting weak THz signal. Measured far field shows that the radiation pattern of each element is shifted angularly, by ≈9°, which can be used for THz imaging. Tested responsivity of the detector shows a good spectral performance from 260 to 400 GHz: respective values were ≥220 V/W, and the best NEP is achieved at about 60 pW/. Besides that, the proposed antenna has advantages of simple structure, easy fabrication, and low cost
    • …
    corecore