218 research outputs found

    Changes in the milk metabolome of the Giant Panda (Ailuropoda melanoleuca) with time after birth: three phases in early lactation and progressive individual differences

    Get PDF
    Ursids (bears) in general, and giant pandas in particular, are highly altricial at birth. The components of bear milks and their changes with time may be uniquely adapted to nourish relatively immature neonates, protect them from pathogens, and support the maturation of neonatal digestive physiology. Serial milk samples collected from three giant pandas in early lactation were subjected to untargeted metabolite profiling and multivariate analysis. Changes in milk metabolites with time after birth were analysed by Principal Component Analysis, Hierarchical Cluster Analysis and further supported by Orthogonal Partial Least Square-Discriminant Analysis, revealing three phases of milk maturation: days 1–6 (Phase 1), days 7–20 (Phase 2), and beyond day 20 (Phase 3). While the compositions of Phase 1 milks were essentially indistinguishable among individuals, divergences emerged during the second week of lactation. OPLS regression analysis positioned against the growth rate of one cub tentatively inferred a correlation with changes in the abundance of a trisaccharide, isoglobotriose, previously observed to be a major oligosaccharide in ursid milks. Three artificial milk formulae used to feed giant panda cubs were also analysed, and were found to differ markedly in component content from natural panda milk. These findings have implications for the dependence of the ontogeny of all species of bears, and potentially other members of the Carnivora and beyond, on the complexity and sequential changes in maternal provision of micrometabolites in the immediate period after birth

    Prolonged transition time between colostrum and mature milk in a bear, the giant panda, Ailuropoda melanoleuca

    Get PDF
    Bears produce the most altricial neonates of any placental mammal. We hypothesized that the transition from colostrum to mature milk in bears reflects a temporal and biochemical adaptation for altricial development and immune protection. Comparison of bear milks with milks of other eutherians yielded distinctive protein profiles. Proteomic and metabolomic analysis of serial milk samples collected from six giant pandas showed a prolonged transition from colostrum to main-phase lactation over approximately 30 days. Particularly striking are the persistence or sequential appearance of adaptive and innate immune factors. The endurance of immunoglobulin G suggests an unusual duration of trans-intestinal absorption of maternal antibodies, and is potentially relevant to the underdeveloped lymphoid system of giant panda neonates. Levels of certain milk oligosaccharides known to exert anti-microbial activities and/or that are conducive to the development of neonatal gut microbiomes underwent an almost complete changeover around days 20–30 postpartum, coincident with the maturation of the protein profile. A potential metabolic marker of starvation was detected, the prominence of which may reflect the natural postpartum period of anorexia in giant panda mothers. Early lactation in giant pandas, and possibly in other ursids, appears to be adapted for the unique requirements of unusually altricial eutherian neonates

    Investigation on The Hydrodynamic Properties in The External Loop of Circulating Fluidized Bed With a Loop Seal

    Get PDF
    The pressure balance and mass balance are influenced by the characteristics of different components in the loop of a circulating fluidized bed (CFB). Experiments were conducted in a 4.3 m high cold laboratory CFB test rig with a loop seal. With a fixed bed inventory and superficial gas velocity, the pressure drop of the loop seal decreased with increasing aeration, thus causing an increase in the solid circulation flux (Gs). Correspondingly, the pressure drop in the riser became higher with increasing Gs; the pressure drop of the cyclone had a non-linear relationship with Gs, and the transition point was determined in the experiment. Using the laser fiber and gas tracer method, hydrodynamic characteristics in the standpipe were directly measured. It was found that the pressure gradient, voidage, and solid height in the standpipe were affected by the pressure balance in the whole loop. By adjusting the gas flow rate and direction in the standpipe, the gas-solid slip velocity and pressure gradient changed correspondingly. Therefore, the standpipe could maintain the pressure balance and realize self-equilibrium of the loop by absorbing the pressure drop variations of other parts in the system

    Comprehensive analysis of the microbiome and metabolome in pus from pyogenic liver abscess patients with and without diabetes mellitus

    Get PDF
    IntroductionPyogenic liver abscess (PLA) patients combined with diabetes mellitus (DM) tend to have more severe clinical manifestations than without DM. The mechanism responsible for this phenomenon is not entirely clear. The current study therefore aimed to comprehensively analyze the microbiome composition and metabolome in pus from PLA patients with and without DM, to determine the potential reasons for these differences.MethodsClinical data from 290 PLA patients were collected retrospectively. We analyzed the pus microbiota using 16S rDNA sequencing in 62 PLA patients. In addition, the pus metabolomes of 38 pus samples were characterized by untargeted metabolomics analysis. Correlation analyses of microbiota, metabolites and laboratory findings were performed to identify significant associations.ResultsPLA patients with DM had more severe clinical manifestations than PLA patients without DM. There were 17 discriminating genera between the two groups at the genus level, among which Klebsiella was the most discriminating taxa. The ABC transporters was the most significant differential metabolic pathway predicted by PICRUSt2. Untargeted metabolomics analysis showed that concentrations of various metabolites were significantly different between the two groups and seven metabolites were enriched in the ABC transporters pathway. Phosphoric acid, taurine, and orthophosphate in the ABC transporters pathway were negatively correlated with the relative abundance of Klebsiella and the blood glucose level.DiscussionThe results showed that the relative abundance of Klebsiella in the pus cavity of PLA patients with DM was higher than those without DM, accompanied by changes of various metabolites and metabolic pathways, which may be associated with more severe clinical manifestations

    Ultrahigh Piezoelectric Performance through Synergistic Compositional and Microstructural Engineering

    Get PDF
    Piezoelectric materials enable the conversion of mechanical energy into electrical energy and vice-versa. Ultrahigh piezoelectricity has been only observed in single crystals. Realization of piezoelectric ceramics with longitudinal piezoelectric constant (d33) close to 2000 pC N–1, which combines single crystal-like high properties and ceramic-like cost effectiveness, large-scale manufacturing, and machinability will be a milestone in advancement of piezoelectric ceramic materials. Here, guided by phenomenological models and phase-field simulations that provide conditions for flattening the energy landscape of polarization, a synergistic design strategy is demonstrated that exploits compositionally driven local structural heterogeneity and microstructural grain orientation/texturing to provide record piezoelectricity in ceramics. This strategy is demonstrated on [001]PC-textured and Eu3+-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) ceramics that exhibit the highest piezoelectric coefficient (small-signal d33 of up to 1950 pC N–1 and large-signal d33* of ≈2100 pm V–1) among all the reported piezoelectric ceramics. Extensive characterization conducted using high-resolution microscopy and diffraction techniques in conjunction with the computational models reveals the underlying mechanisms governing the piezoelectric performance. Further, the impact of losses on the electromechanical coupling is identified, which plays major role in suppressing the percentage of piezoelectricity enhancement, and the fundamental understanding of loss in this study sheds light on further enhancement of piezoelectricity. These results on cost-effective and record performance piezoelectric ceramics will launch a new generation of piezoelectric applications

    Helicobacter zhangjianzhongii sp. nov., isolated from dog feces

    Get PDF
    In 2019, two distinct bacterial isolates were independently isolated from the fecal samples of separate dogs in Beijing, China. These cells exhibit microaerobic, are Gram-negative, motile, and possess a characteristic spiral shape with bipolar single flagellum. They display positive results for the oxidase test while being negative for both catalase and urease. These organisms measure approximately 0.2–0.3 μm in width and 4.5–6 μm in length. The colonies are wet, flat, grey, circular, and smooth with sizes ranging from 1 to 2 mm in diameter after 2 days of growth. However, strains may exhibit variations in size and morphology following extended incubation. Phylogenetic analyses based on the 16S rRNA gene and core genome indicated that these two isolates belong to the genus Helicobacter and formed a robust clade that was remains distinctly separate from currently recognized species. These two isolates shared low dDDH relatedness and ANI values with their closest species Helicobacter canis CCUG 32756T, with these values falling below the commonly cutoff values for strains of the same species. The genomic DNA G + C contents of strain XJK30-2 were 44.93 mol%. Comparing the phenotypic and phylogenetic features between these two isolates and their closely related species, XJK30-2 represents a novel species within the genus Helicobacter, for which the name Helicobacter zhangjianzhongii sp. nov. (Type strain XJK30-2T = GDMCC 1.3695T) is proposed

    Age-associated microbiome shows the giant panda lives on hemicelluloses, not on cellulose

    Get PDF
    The giant panda feeds almost exclusively on bamboo, a diet highly enriched in lignin and cellulose, but is characterized by a digestive tract similar to carnivores. It is still large unknown if and how the giant panda gut microbiota contributes to lignin and cellulose degradation. Here we show the giant pandas’ gut microbiota does not significantly contribute to cellulose and lignin degradation. We found that no operational taxonomic unit had a nearest neighbor identified as a cellulolytic species or strain with a significant higher abundance in juvenile than cubs, a very low abundance of putative lignin and cellulose genes existed in part of analyzing samples but a significant higher abundance of genes involved in starch and hemicellulose degradation in juveniles than cubs. Moreover, a significant lower abundance of putative cellulolytic genes and a significant higher abundance of putative α-amylase and hemicellulase gene families were present in giant pandas than in omnivores or herbivores
    • …
    corecore