15 research outputs found

    Brown Adipose Tissue Can Be Activated or Inhibited within an Hour before 18F-FDG Injection: A Preliminary Study with MicroPET

    Get PDF
    Brown adipose tissue (BAT) is emerging as a potential target for treating human obesity. It has been indicated that BAT is rich in innervations of sympathetic nerve control. Using 18F-FDG microPET imaging, this study aims at evaluating how factors related to sympathetic activation/inhibition changed BAT metabolism of mice. BAT 18F-FDG uptake were semiquantitatively evaluated in different groups of mice under temperature (cold or warm stimulus) or pharmacological interventions (norepinephrine, epinephrine, isoprenaline, or propranolol) and were compared with the corresponding controls. It was found that BAT activation can be stimulated by cold exposure (P = 1.96 × 10−4), norepinephrine (P = .002), or both (P = 2.19 × 10−6) within an hour before 18F-FDG injection and can also be alleviated by warming up (P = .001) or propranolol lavage (P = .027). This preliminary study indicated that BAT function could be evaluated by 18F-FDG PET imaging through short-term interventions, which paved the way for further investigation of the relationship between human obesity and BAT dysfunction

    Myocardial tissue and metabolism characterization in men with alcohol consumption by cardiovascular magnetic resonance and 11C-acetate PET/CT

    Get PDF
    Background: Chronic alcohol consumption initially leads to asymptomatic left ventricular dysfunction, but can result in myocardial impairment and heart failure if ongoing. This study sought to characterize myocardial tissues and oxidative metabolism in asymptomatic subjects with chronic alcohol consumption by quantitative cardiovascular magnetic resonance (CMR) and 11C-acetate positron emission tomography (PET)/computed tomography (CT). Methods: Thirty-four male subjects (48.8 +/- 9.1 years) with alcohol consumption > 28 g/day for > 10 years and 35 age-matched healthy male subjects (49.5 +/- 9.7 years) underwent CMR and 11C-acetate PET/CT. Native and post T1 values and extracellular volume (ECV) from CMR and Kmono and K1 from PET imaging were measured. Quantitative measurements by CMR and PET imaging were compared between subjects with moderate to heavy alcohol consumption and healthy controls, and their correlations were also analyzed. Results: Compared to healthy controls, subjects with alcohol consumption showed significantly shorter native T1 (1133 +/- 65 ms vs. 1186 +/- 31 ms, p 0.05). In contrast, subjects with heavy alcohol consumption showed significantly lower Kmono values compared to those with moderate alcohol consumption (52.9 +/- 12.1 min(- 1) x 10(- 3) vs. 63.7 +/- 9.2 min(- 1) x 10(- 3), p = 0.012). Strong and moderate correlations were found between K1 and ECV in healthy controls (r = 0.689, p = 0.013) and subjects with moderate alcohol consumption (r = 0.518, p = 0.048), respectively. Conclusion: Asymptomatic men with heavy alcohol consumption have detectable structural and metabolic changes in myocardium on CMR and 11C-acetate PET/CT. Compared with quantitative CMR, 11C-acetate PET/CT imaging may be more sensitive for detecting differences in myocardial damage among subjects with moderate to heavy alcohol consumption.</div

    Application of dual phase imaging of 11C-acetate positron emission tomography on differential diagnosis of small hepatic lesions.

    No full text
    OBJECTIVE: Previously we observed that dual phase 11C-acetate positron emission tomography (AC-PET) could be employed for differential diagnosis of liver malignancies. In this study, we prospectively evaluated the effect of dual phase AC-PET on differential diagnosis of primary hepatic lesions of 1-3 cm in size. METHODS: 33 patients having primary hepatic lesions with size of 1-3 cm in diameter undertook dual phase AC-PET scans. Procedure included an early upper-abdomen scan immediately after tracer injection and a conventional scan in 11-18 min. The standardized uptake value (SUV) was calculated for tumor (SUVT) and normal tissue (SUVB), from which 11C-acetate uptake ratio (as lesion against normal liver tissue, SUVT/SUVB) in early imaging (R1), conventional imaging (R2), and variance between R2 and R1 (ΔR) were derived. Diagnoses based on AC-PET data and histology were compared. Statistical analysis was performed with SPSS 19.0. RESULTS: 20 patients were found to have HCC and 13 patients had benign tumors. Using ΔR>0 as criterion for malignancy, the accuracy and specificity were significantly increased comparing with conventional method. The area under ROC curve (AUC) for R1, R2, and ΔR were 0.417, 0.683 and 0.831 respectively. Differential diagnosis between well-differentiated HCCs and benign lesions of FNHs and hemangiomas achieved 100% correct. Strong positive correlation was also found between R1 and R2 in HCC (r2 = 0.55, P<0.001). CONCLUSIONS: Dual phase AC-PET scan is a useful procedure for differential diagnosis of well-differentiated hepatocellular carcinoma and benign lesions. The dynamic changes of 11C-acetate uptake in dual phase imaging provided key information for final diagnosis

    General information of tumor size, PET results and pathological diagnosis.

    No full text
    <p>* I, Edmondson-Steiner grade I and II; II, Edmondson-Steiner grade III; and III, Edmondson-Steiner grade IV; B, benign.</p

    Statistical analysis of the R1, R2, and ΔR as criteria for hepatic lesion diagnosis.

    No full text
    <p>Statistical analysis of the R1, R2, and ΔR as criteria for hepatic lesion diagnosis.</p

    Correlation of R1 and R2 from dual-phase PET imaging.

    No full text
    <p>The tracer uptake ratio from early phase imaging (R1) and conventional imaging (R2) of 20 HCC patients were plotted and linear regression was generated. r<sup>2</sup> = 0.55 and P<0.01</p

    The area under the curve of ROC for R1, R2 and ΔR.

    No full text
    <p>AUC for R1 = 0.417, SE = 0.109; AUC for R2 = 0.683, SE = 0.095; AUC for ΔR = 0.831, SE = 0.077. The diagnostic accuracy of the ΔR was statistically significantly better than that of R1 and R2 (P<0.05).</p

    Performance evaluation of a new high-sensitivity time-of-flight clinical PET/CT system

    No full text
    Abstract Background PoleStar m660 is a newly developed clinical PET/CT system with time-of-flight (TOF) capability. The aim of this study is to characterize the performance of the new system. Spatial resolution, sensitivity, scatter fraction, and noise equivalent count rate (NECR) were measured on the scanner according to the NEMA NU 2-2012 protocol. The timing resolution was measured using a rotating line source that orbited around the center of field of view (CFOV) at a radius of 20 cm. The image quality phantom was also imaged to quantify the percent contrast, percent background variability, and residual error. The impacts of data acquisition time and bed overlap on the PET image quality were also evaluated using phantom and patient studies. Results The transverse (axial) spatial resolutions were 3.59 mm (3.67), 4.08 mm (4.65), and 5.32 mm (6.48) full width at half maximum (FWHM) at 1 cm, 10 cm, and 20 cm, respectively, off the CFOV. The measured sensitivity was 10.7 cps/kBq at the CFOV and 10.4 cps/kBq at 10 cm off the CFOV. The peak NECR was 216.7 kcps at an activity concentration of 29.1 kBq/ml, and the scatter fraction was 38.2%. An average of 435 ps FWHM timing resolution was measured. For the image quality phantom, the contrast recovery ratios ranged from 33.9 to 76.4%, while the background variability ranged from 4.7 to 2.0%. In the preliminary clinical study, no noticeable difference in the image quality was observed when the scan time for the whole body and brain was reduced to 1 min/bed and 3 min, respectively. The tested 21% bed overlap showed no significant difference in the image quality compared with the default 38% bed overlap setting. Conclusions The physical performances of the PoleStar m660 PET/CT system showed good sensitivity, count rate performance, and timing resolution. The improved performance could help to reduce the acquisition time and bed overlap in the clinical application without detectable compromise in the image quality

    Deformed Mediated Larval Incisor Lobe Development Causes Differing Feeding Behavior between Oriental Armyworm and Fall Armyworm

    No full text
    Mandibular incisor lobes are important for insect feeding behavior, living habits and niche. However, the molecular regulation of insect incisor lobe development remains unknown. In this study, we found that two maize pests, oriental armyworm Mythimna separata and fall armyworm Spodoptera frugiperda, have different feeding patterns in maize, which are closely associated with the different development patterns of their incisor lobes. Different from first to sixth instar S. frugiperda, which feed on leaf tissues and whorls with sharp incisor lobes, older instars of M. separata feed from leaf margins with no incisor lobes. Hox gene Deformed (Dfd) is important for head appendages, but its function in incisor lobe development is not clear. Here, Dfds were identified from two armyworm species, and both were expressed highly in heads and eggs. Interestingly, the expression levels of MsDfd were relatively high in larval mandibles and decreased dramatically from fourth-instar mandibles in M. separata. Knockdown of MsDfd resulted in malformed mandibles with no incisor lobe in M. separata, making the larvae unable to perform window-feeding. However, RNAi of SfDfd did not affect the mandibles and window-feeding pattern of S. frugiperda, indicating the different roles of Dfd in these two species. Moreover, the mortality of new first instar M. separata increased after feeding dsMsDfd but did not for S. frugiperda feeding dsSfDfd. These findings revealed that Dfd mediated the larval mandibular incisor lobe morphology, affecting its feeding pattern in M. separata, broadening the knowledge of Dfd functions in insect mandibles and feeding behavior
    corecore