6 research outputs found

    Analyzing Benzene and Cyclohexane Emulsion Droplet Collisions on Ultramicroelectrodes

    No full text
    We report the collisions of single emulsion oil droplets with extremely low dielectric constants (e.g., benzene, Δ of 2.27, or cyclohexane, Δ of 2.02) as studied via emulsion droplet reactor (EDR) on an ultramicroelectrode (UME). By applying appropriate potentials to the UME, we observed the electrochemical effects of single-collision signals from the bulk electrolysis of single emulsion droplets. Different hydrophobic redox species (ferrocene, decamethyl-ferrocene, or metalloporphyrin) were trapped in a mixed benzene (or cyclohexane) oil-in-water emulsion using an ionic liquid as the supporting electrolyte and emulsifier. The emulsions were prepared using ultrasonic processing. Spike-like responses were observed in each <i>i–t</i> response due to the complete electrolysis of all of the above-mentioned redox species within the droplet. On the basis of these single-particle collision results, the collision frequency, size distribution, <i>i–t</i> decay behavior of the emulsion droplets, and possible mechanisms are analyzed and discussed. This work demonstrated that bulk electrolysis can be achieved in a few seconds in these attoliter reactors, suggesting many applications, such as analysis and electrosynthesis in low dielectric constant solvents, which have a much broader potential window

    Single Organic Droplet Collision Voltammogram via Electron Transfer Coupled Ion Transfer

    No full text
    Single-emulsion toluene oil droplets (femtoliter) containing a hydrophobic redox probe that are dispersed in water stochastically collide with an ultramicroelectrode (UME). The fast-scan cyclic voltammetry (FSCV) or Fourier-transformed sinusoidal voltammetry (FTSV) is applied: the UME was scanned with a fast, repetitive triangular, or sinusoidal potential, and its current in time/frequency domains were monitored. The electron transfer at the UME/oil interface is coupled with ion transfer at the oil/water interface. Thus, the obtained transient voltammograms of a myriad of ions were used to estimate thermodynamics of ion transfer at the toluene/water interface. Additionally, the single-droplet voltammogram combined with finite element simulations reveal the droplet’s size and shape distributions. Four collision mechanisms with new physical insights were also uncovered via comprehensive analysis of phase angle in the frequency domain, time domain FSCVs, and finite element simulations

    Probing Ion Transfer across Liquid–Liquid Interfaces by Monitoring Collisions of Single Femtoliter Oil Droplets on Ultramicroelectrodes

    No full text
    We describe a method of observing collisions of single femtoliter (fL) oil (i.e., toluene) droplets that are dispersed in water on an ultramicroelectrode (UME) to probe the ion transfer across the oil/water interface. The oil-in-water emulsion was stabilized by an ionic liquid, in which the oil droplet trapped a highly hydrophobic redox probe, rubrene. The ionic liquid also functions as the supporting electrolyte in toluene. When the potential of the UME was biased such that rubrene oxidation would be possible when a droplet collided with the electrode, no current spikes were observed. This implies that the rubrene radical cation is not hydrophilic enough to transfer into the aqueous phase. We show that current spikes are observed when tetrabutylammonium trifluoromethanesulfonate or tetrahexylammonium hexafluorophosphate are introduced into the toluene phase and when tetrabutylammonium perchlorate is introduced into the water phase, implying that the ion transfer facilitates electron transfer in the droplet collisions. The current (<i>i</i>)–time (<i>t</i>) behavior was evaluated quantitatively, which indicated the ion transfer is fast and reversible. Furthermore, the size of these emulsion droplets can also be calculated from the electrochemical collision. We further investigated the potential dependence on the electrochemical collision response in the presence of tetrabutylammonium trifluoromethanesulfonate in toluene to obtain the formal ion transfer potential of tetrabutylammonium across the toluene/water interface, which was determined to be 0.754 V in the inner potential scale. The results yield new physical insights into the charge balance mechanism in emulsion droplet collisions and indicate that the electrochemical collision technique can be used to probe formal ion transfer potentials between water and solvents with very low (Δ < 5) dielectric constants

    A Method to Inhibit Disproportionation of Mn<sup>3+</sup> for Low-Cost Mn–Fe All-Flow Battery

    No full text
    Among battery technologies considered for large-scale energy storage, manganese-based redox flow batteries have been extremely attractive due to the low cost of materials. Impeding its industrial adoption is the precipitation of MnO2 due to disproportionation of Mn3+. In this work, we overcome the formation of MnO2 precipitates through complexation of Mn3+ with Cl– ions. By virtue of the stable [MnCl4(H2O)2]− complex, an inexpensive and scalable Fe–Mn flow battery was demonstrated using Mn3+/Mn2+ and Fe3+/Fe2+ redox couples as catholyte and anolyte, respectively. The flow battery achieved an output voltage of 0.7 V and current density of up to 160 mA cm–2

    Observing Discrete Blocking Events at a Polarized Micro- or Submicro-Liquid/Liquid Interface

    No full text
    Single-entity collisional electrochemistry (SECE), a subfield of single-entity electrochemistry, enables directly characterizing entities and particles in the electrolyte solution at the single-entity resolution. Blockade SECE at the traditional solid ultramicroelectrode (UME)/electrolyte interface suffers from a limitation: only redox-inactive particles can be studied. The wide application of the classical Coulter counter is restricted by the rapid translocation of entities through the orifice, which results in a remarkable proportion of undetected signals. In response, the blocking effect of single charged conductive or insulating nanoparticles (NPs) at low concentrations for ion transfer (IT) at a miniaturized polarized liquid/liquid interface was successfully observed. Since the particles are adsorbed at the liquid/liquid interface, our method also solves the problem of the Coulter counter having a too-fast orifice translocation rate. The decreasing quantal staircase/step current transients are from landings (controlled by electromigration) of either conductive or insulating NPs onto the interface. This interfacial NP assembly shields the IT flux. The size of each NP can be calculated by the step height. The particle size measured by dynamic light scattering (DLS) is used for comparison with that calculated from electrochemical blocking events, which is in fairly good agreement. In short, the blocking effect of IT by single entities at micro- or submicro-liquid/liquid interface has been proven experimentally and is of great reference in single-entity detection

    Oxygen reduction at soft interfaces catalyzed by in situ-generated reduced graphene oxide

    No full text
    Face to face: Flakes of reduced graphene oxide, synthesized in situ at the liquid/liquid interface from a graphene‐oxide precursor, are capable of catalyzing the biphasic reduction of protons to hydrogen peroxide in the presence of molecular oxygen and an organic solubilized electron donor. This offers a new perspective for the bulk production of a green oxidant through biphasic electrolysi
    corecore