5 research outputs found

    Deletion of human GP1BB and SEPT5 is associated with Bernard-Soulier syndrome, platelet secretion defect, polymicrogyria, and developmental delay.

    No full text
    The bleeding disorder Bernard-Soulier syndrome (BSS) is caused by mutations in the genes coding for the platelet glycoprotein GPIb/IX receptor. The septin SEPT5 is important for active membrane movement such as vesicle trafficking and exocytosis in non-dividing cells (i.e. platelets, neurons). We report on a four-year-old boy with a homozygous deletion comprising not only glycoprotein Ibβ (GP1BB) but also the SEPT5 gene, located 5' to GP1BB. He presented with BSS, cortical dysplasia (polymicrogyria), developmental delay, and platelet secretion defect. The homozygous deletion of GP1BB and SEPT5, which had been identified by PCR analyses, was confirmed by Southern analyses and denaturing HPLC (DHPLC). The parents were heterozygous for this deletion. Absence of GPIbβ and SEPT5 proteins in the patient's platelets was illustrated using transmission electron microscopy. Besides decreased GPIb/IX expression, flow cytometry analyses revealed impaired platelet granule secretion. Because the bleeding disorder was extremely severe, the boy received bone marrow transplantation (BMT) from a HLA-identical unrelated donor. After successful engraftment of BMT, he had no more bleeding episodes. Interestingly, also his mental development improved strikingly after BMT. This report describes for the first time a patient with SEPT5 deficiency presenting with cortical dysplasia (polymicrogyria), developmental delay, and platelet secretion defect

    Recurring mutations in RPL15 are linked to hydrops fetalis and treatment independence in diamond-blackfan anemia

    Get PDF
    Diamond-Blackfan anemia (DBA) is a rare inherited bone marrow failure disorder linked predominantly to ribosomal protein gene mutations. Here the European DBA consortium reports novel mutations identified in the RPL15 gene in 6 unrelated individuals diagnosed with DBA. Although point mutations have not been previously reported for RPL15, we identified 4 individuals with truncating mutations p.Tyr81* (in 3 of 4) and p.Gln29*, and 2 with missense variants p.Leu10Pro and p.Lys153Thr. Notably, 75% (3 of 4) of truncating mutation carriers manifested with severe hydrops fetalis and required intrauterine transfusions. Even more remarkable is the observation that the 3 carriers of p.Tyr81* mutation became treatment-independent between four and 16 months of life and maintained normal blood counts until their last follow up. Genetic reversion at the DNA level as a potential mechanism of remission was not observed in our patients. In vitro studies revealed that cells carrying RPL15 mutations have pre-rRNA processing defects, reduced 60S ribosomal subunit formation, and severe proliferation defects. Red cell culture assays of RPL15-mutated primary erythroblast cells also showed a severe reduction in cell proliferation, delayed erythroid differentiation, elevated TP53 activity, and increased apoptosis. This study identifies a novel subgroup of DBA with mutations in the RPL15 gene with an unexpected high rate of hydrops fetalis and spontaneous, long-lasting remission

    Favorable outcomes of hematopoietic stem cell transplantation in children and adolescents with Diamond-Blackfan anemia

    No full text
    Diamond-Blackfan anemia (DBA) is a congenital pure red cell aplasia associated with congenital abnormalities and cancer predisposition. Allogeneic hematopoietic stem cell transplantation (HSCT) can correct the hematological phenotype and is indicated in transfusion-dependent patients. In 70 children reported to the German DBA and French HSCT registries, HSCT was performed from 1985 to 2017. Median age at HSCT was 5.5 years (range, 0.9-17.3 years). Two-thirds of patients (64%) were transplanted from a matched sibling donor (MSD), and most procedures were performed after the year 1999 (73%). Primary engraftment was achieved in all patients. One patient developed secondary graft failure. Cumulative incidence of acute graft-versus-host disease (GVHD) was 24% for °II-IV (95% confidence interval [CI], 16% to 37%) and 7% for °III-IV (95% CI, 3% to 17%); cumulative incidence of chronic GVHD was 11% (95% CI, 5% to 22%). The probability of chronic GVHD-free survival (cGFS) was 87% (95% CI, 79% to 95%) and significantly improved over time (<2000: 68% [95% CI, 47% to 89%] vs ≥2000: 94% [95% CI, 87% to 100%], P < .01). cGFS was comparable following HSCT from a MSD and an unrelated donor (UD). Of note, no severe chronic GVHD or deaths were reported following MSD-HSCT after 1999. The difference of cGFS in children transplanted <10 years of age compared with older patients did not reach statistical significance (<10 years: 90% [95% CI, 81% to 99%] vs 10-18 years 78% [95% CI, 58% to 98%]). In summary, these data indicate that HSCT is efficient and safe in young DBA patients and should be considered if a MSD or matched UD is available. HSCT for transfusion dependency only must be critically discussed in older patients

    The expansion of human T-bethighCD21low B cells is T cell dependent

    No full text
    Accumulation of human CD21low B cells in peripheral blood is a hallmark of chronic activation of the adaptive immune system in certain infections and autoimmune disorders. The molecular pathways underpinning the development, function, and fate of these CD21low B cells remain incompletely characterized. Here, combined transcriptomic and chromatin accessibility analyses supported a prominent role for the transcription factor T-bet in the transcriptional regulation of these T-bethighCD21low B cells. Investigating essential signals for generating these cells in vitro established that B cell receptor (BCR)/interferon-γ receptor (IFNγR) costimulation induced the highest levels of T-bet expression and enabled their differentiation during cell cultures with Toll-like receptor (TLR) ligand or CD40L/interleukin-21 (IL-21) stimulation. Low proportions of CD21low B cells in peripheral blood from patients with defined inborn errors of immunity (IEI), because of mutations affecting canonical NF-κB, CD40, and IL-21 receptor or IL-12/IFNγ/IFNγ receptor/signal transducer and activator of transcription 1 (STAT1) signaling, substantiated the essential roles of BCR- and certain T cell–derived signals in the in vivo expansion of T-bethighCD21low B cells. Disturbed TLR signaling due to MyD88 or IRAK4 deficiency was not associated with reduced CD21low B cell proportions. The expansion of human T-bethighCD21low B cells correlated with an expansion of circulating T follicular helper 1 (cTfh1) and T peripheral helper (Tph) cells, identifying potential sources of CD40L, IL-21, and IFNγ signals. Thus, we identified important pathways to target autoreactive T-bethighCD21low B cells in human autoimmune conditions, where these cells are linked to pathogenesis and disease progression
    corecore