39 research outputs found

    Does the Arctic Amplification peak this decade?

    Get PDF
    Temperatures rise faster in the Arctic than on global average, a phenomenon known as Arctic Amplification. While this is well established from observations and model simulations, projections of future climate (here: RCP8.5) with models of the Coupled Model Intercomparison Project phase 5 (CMIP5) also indicate that the Arctic Amplification has a maximum. We show this by means of an Arctic Amplification factor (AAF), which we define as the ratio of Arctic mean to global mean surface air temperature (SAT) anomalies. The SAT anomalies are referenced to the period 1960-1980 and smoothed by a 30-year running mean. For October, the multi-model ensemble-mean AAF reaches a maximum in 2017. The maximum moves however to later years as Arctic winter progresses: for the autumn mean SAT (September to November) the maximum AAF is found in 2028 and for winter (December to February) in 2060. Arctic Amplification is driven, amongst others, by the ice-albedo feedback (IAF) as part of the more general surface albedo feedback (involving clouds, snow cover, vegetation changes) and temperature effects (Planck and lapse-rate feedbacks).We note that sea ice retreat and the associated warming of the summer Arctic Ocean are not only an integral part of the IAF but are also involved in the other drivers. In the CMIP5 simulations, the timing of the AAF maximum coincides with the period of fastest ice retreat for the respective month. Presence of at least some sea ice is crucial for the IAF to be effective because of the contrast in surface albedo between ice and open water and the need to turn ocean warming into ice melt. Once large areas of the Arctic Ocean are ice-free, the IAF should be less effective. We thus hypothesize that the ice retreat significantly affects AAF variability and forces a decline of its magnitude after at least half of the Arctic Ocean is ice-free and the ice cover becomes basically seasonal

    The Arctic-Subarctic sea ice system is entering a seasonal regime: Implications for future Arctic amplification

    Get PDF
    The loss of Arctic sea ice is a conspicuous example of climate change. Climate models project ice-free conditions during summer this century under realistic emission scenarios, reflecting the increase in seasonality in ice cover. To quantify the increased seasonality in the Arctic-Subarctic sea ice system, we define a non-dimensional seasonality number for sea ice extent, area, and volume from satellite data and realistic coupled climate models. We show that the Arctic-Subarctic, i.e. The northern hemisphere, sea ice now exhibits similar levels of seasonality to the Antarctic, which is in a seasonal regime without significant change since satellite observations began in 1979. Realistic climate models suggest that this transition to the seasonal regime is being accompanied by a maximum in Arctic amplification, which is the faster warming of Arctic latitudes compared to the global mean, in the 2010s. The strong link points to a peak in sea-ice-related feedbacks that occurs long before the Arctic becomes ice-free in summer

    Recirculating flow in a basin with closed f/h contours

    Get PDF
    A general circulation model is used to study the time evolution of a rotating, weakly baroclinic fluid in a basin with sloping sidewalls. Contours of f/h, where f is the Coriolis parameter and h is the depth of the fluid, are closed in this model. The fluid is forced by a localized source of positive vorticity. The initial response is a narrow, recirculating cell that resembles a β-plume modified by bathymetry. Such cells have been found in previous studies and have been linked to the recirculation cells observed in the subpolar North Atlantic. However, this is not a steady solution in this basin with closed f/h contours, and the circulation evolves into a gyre that encircles the basin. The time at which this transition occurs depends on the Rossby number, with higher Rossby numbers transitioning earlier. Based on the budget of potential vorticity, an argument is made that the western boundary is not long enough to drain significant vorticity from the flow and therefore a bathymetric β-plume is not a steady solution. A similar argument suggests that the Labrador Sea cannot sustain steady, linear, barotropic recirculations either. We speculate that the observed recirculations depend on inertial separation at sharp bathymetric gradients to break the assumption of linearity, which leads to significant viscous dissipation

    Fates and Travel Times of Denmark Strait Overflow Water in the Irminger Basin*

    Get PDF
    The Denmark Strait Overflow (DSO) supplies about one-third of the North Atlantic Deep Water and is critical to global thermohaline circulation. Knowledge of the pathways of DSO through the Irminger Basin and its transformation there is still incomplete, however. The authors deploy over 10 000 Lagrangian particles at the Denmark Strait in a high-resolution ocean model to study these issues. First, the particle trajectories show that the mean position and potential density of dense waters cascading over the Denmark Strait sill evolve consistently with hydrographic observations. These sill particles transit the Irminger Basin to the Spill Jet section (65.25°N) in 5–7 days and to the Angmagssalik section (63.5°N) in 2–3 weeks. Second, the dense water pathways on the continental shelf are consistent with observations and particles released on the shelf in the strait constitute a significant fraction of the dense water particles recorded at the Angmagssalik section within 60 days (~25%). Some particles circulate on the shelf for several weeks before they spill off the shelf break and join the overflow from the sill. Third, there are two places where the water density following particle trajectories decreases rapidly due to intense mixing: to the southwest of the sill and southwest of the Kangerdlugssuaq Trough on the continental slope. After transformation in these places, the overflow particles exhibit a wide range of densities

    Coastal trapped waves and other subinertial variability along the Southeast Greenland coast in a realistic numerical simulation

    Get PDF
    Ocean currents along the Southeast Greenland Coast play an important role in the climate system. They carry dense water over the Denmark Strait sill, fresh water from the Arctic and the Greenland Ice Sheet into the subpolar ocean, and warm Atlantic water into Greenland’s fjords, where it can interact with outlet glaciers. Observational evidence from moorings shows that the circulation in this region displays substantial subinertial variability (typically with periods of several days). For the dense water flowing over the Denmark Strait sill, this variability augments the time-mean transport. It has been suggested that the subinertial variability found in observations is associated with Coastal Trapped Waves, whose properties depend on bathymetry, stratification, and the mean flow. Here, we use the output of a high-resolution realistic simulation to diagnose and characterize subinertial variability in sea surface height and velocity along the coast. The results show that the subinertial signals are coherent over hundreds of kilometers along the shelf. We find Coastal Trapped Waves on the shelf and along the shelf break in two subinertial frequency bands—at periods of 1–3 days and 5–18 days—that are consistent with a combination of Mode I waves and higher modes. Furthermore, we find that northeasterly barrier winds may trigger the 5–18 day shelf waves, whereas the 1–3 day variability is linked to high wind speeds over Sermilik Deep

    Lagrangian perspective on the origins of Denmark Strait Overflow

    Get PDF
    Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(8), (2020): 2393-2414, doi:10.1175/JPO-D-19-0210.1.The Denmark Strait Overflow (DSO) is an important contributor to the lower limb of the Atlantic meridional overturning circulation (AMOC). Determining DSO formation and its pathways is not only important for local oceanography but also critical to estimating the state and variability of the AMOC. Despite prior attempts to understand the DSO sources, its upstream pathways and circulation remain uncertain due to short-term (3–5 days) variability. This makes it challenging to study the DSO from observations. Given this complexity, this study maps the upstream pathways and along-pathway changes in its water properties, using Lagrangian backtracking of the DSO sources in a realistic numerical ocean simulation. The Lagrangian pathways confirm that several branches contribute to the DSO from the north such as the East Greenland Current (EGC), the separated EGC (sEGC), and the North Icelandic Jet (NIJ). Moreover, the model results reveal additional pathways from south of Iceland, which supplied over 16% of the DSO annually and over 25% of the DSO during winter of 2008, when the NAO index was positive. The southern contribution is about 34% by the end of March. The southern pathways mark a more direct route from the near-surface subpolar North Atlantic to the North Atlantic Deep Water (NADW), and needs to be explored further, with in situ observations.This work was financially supported by the U.S. National Science Foundation under Grant Numbers OAC-1835640, OCE-1633124, OCE-1433448, and OCE-1259210

    Is computational oceanography coming of age?

    Get PDF
    Computational oceanography is the study of ocean phenomena by numerical simulation, especially dynamical and physical phenomena. Progress in information technology has driven exponential growth in the number of global ocean observations and the fidelity of numerical simulations of the ocean in the past few decades. The growth has been exponentially faster for ocean simulations, however. We argue that this faster growth is shifting the importance of field measurements and numerical simulations for oceanographic research. It is leading to the maturation of computational oceanography as a branch of marine science on par with observational oceanography. One implication is that ultraresolved ocean simulations are only loosely constrained by observations. Another implication is that barriers to analyzing the output of such simulations should be removed. Although some specific limits and challenges exist, many opportunities are identified for the future of computational oceanography. Most important is the prospect of hybrid computational and observational approaches to advance understanding of the ocean

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Analogies of Ocean/Atmosphere Rotating Fluid Dynamics with Gyroscopes: Teaching Opportunities

    No full text
    The dynamics of the rotating shallow-water (RSW) system include geostrophic f low and inertial oscillation. These classes of motion are ubiquitous in the ocean and atmosphere. They are often surprising to people at first because intuition about rotating fluids is uncommon, especially the counterintuitive effects of the Coriolis force. The gyroscope, or toy top, is a simple device whose dynamics are also surprising. It seems to defy gravity by not falling over, as long as it spins fast enough. The links and similarities between rotating rigid bodies, like gyroscopes, and rotating fluids are rarely considered or emphasized. In fact, the dynamics of the RSW system and the gyroscope are related in specific ways and they exhibit analogous motions. As such, gyroscopes provide important pedagogical opportunities for instruction, comparison, contrast, and demonstration. Gyroscopic precession is analogous to geostrophic flow and nutation is analogous to inertial oscillation. The geostrophic adjustment process in rotating fluids can be illustrated using a gyroscope that undergoes transient adjustment to steady precession from rest. The controlling role of the Rossby number on RSW dynamics is reflected in a corresponding nondimensional number for the gyroscope. The gyroscope can thus be used to illustrate RSW dynamics by providing a tangible system that behaves like rotating fluids do, such as the large-scale ocean and atmosphere. These relationships are explored for their potential use in educational settings to highlight the instruction, comparison, contrast, and demonstration of important fluid dynamics principles.National Science Foundation (U.S.) (Award DUE-0618483
    corecore