49 research outputs found

    Long-term survival after percutaneous irreversible electroporation of inoperable colorectal liver metastases

    Get PDF
    Background: For colorectal liver metastases (CRLM) that are not amenable to surgery or thermal ablation, irreversible electroporation (IRE) is a novel local treatment modality and additional option. Methods: This study is a retrospective long-term follow-up of patients with CRLM who underwent IRE as salvage treatment. Results: Of the 24 included patients, 18(75.0%) were male, and the median age was 57 (range: 28-75) years. The mean time elapsed from diagnosis to IRE was 37.9 +/- 37.3 months. Mean overall survival was 26.5 months after IRE (range: 2.5-69.2 months) and 58.1 months after diagnosis (range: 14.8-180.1 months). One-, three-, and five-year survival rates after initial diagnosis were 100.0%, 79.2%, and 41.2%; after IRE, the respective survival rates were 79.1%, 25.0%, and 8.3%. There were no statistically significant differences detected in survival after IRE with respect to gender, age, T- or N-stage at the time of diagnosis, size of metastases subject to IRE, number of hepatic lesions, or time elapsed between IRE and diagnosis. Conclusion: For nonresectable CRLM, long-term survival data emphasize the value of IRE as a new minimally invasive local therapeutic approach in multimodal palliative treatment, which is currently limited to systemic or regional therapies in this setting

    Transarterial chemoembolization (TACE) with degradable starch microspheres (DSM) in hepatocellular carcinoma (HCC): multi-center results on safety and efficacy

    Get PDF
    Background: Hepatocellular carcinoma (HCC) is the 3rd leading cause of cancer-related death worldwide. The majority of HCCs are diagnosed in a stage that is not eligible for curative resection. For intermediate stage HCC, transarterial chemoembolization (TACE) is the recommended treatment. We evaluated the safety and efficacy of DSM (degradable starch microspheres) as embolic agent in transarterial chemoembolization (TACE) for the treatment of intermediate stage, non-resectable hepatocellular carcinoma (HCC). Methods and Findings: A national, multi-center observational study on the safety and efficacy of DSM-TACE for the treatment of intermediate HCC was conducted. The recruitment period for the study was from January 2010 to June 2014. The primary endpoints were safety and treatment response according to the mRECIST criteria. A total of 179 DSM-TACE procedures in 50 patients were included in the analysis. The therapeutic efficacy assessed with mRECIST was as follows: complete response (n=1; 2 %), 21 partial response (42 %), 13 stable disease (26 %), 9 progressive disease (18 %), and 6 incomplete data (12 %). Thus, the objective response rate was 44% (n=22) and disease control rate was 70% (n=35). A total of 76 immediate adverse events (AE) and 2 severe adverse events (SAE) were recorded. Forty-eight percent of patients (n=24) did not encounter any immediate AE/SAE. Between treatments, a total of 66 AE and one SAE were recorded. Twenty-four patients (48 %) did not encounter any AE/SAE in between treatments. Conclusion: The use of DSM as a TACE embolic agent appears to be safe for the treatment of HCC and has promising efficacy

    Gd-EOB-DTPA-enhanced MRI for evaluation of liver function: Comparison betewwn signal-intensity-based indices and T1 relaxometry

    Get PDF
    Gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) is a paramagnetic hepatobiliary magnetic resonance (MR) contrast agent. Due to its OATP1B1/B3-dependent hepatocyte-specific uptake and paramagnetic properties increasing evidence has emerged to suggest that Gd-EOBDTPA- enhanced MRI can be potentially used for evaluation of liver function. In this paper we compare the diagnostic performance of Gd-EOB-DTPA-enhanced relaxometry-based and commonly used signal-intensity (SI)-based indices, including the hepatocellular uptake index (HUI) and SI-based indices corrected by spleen or muscle, for evaluation of liver function, determined using the Indocyanin green clearance (ICG) test. Simple linear regression model showed a significant correlation of the plasma disappearance rate of ICG (ICG-PDR) with all Gd-EOB-DTPA-enhanced MRI-based liver function indices with a significantly better correlation of relaxometry-based indices on ICG-PDR compared to SI-based indices. Among SI-based indices, HUI achieved best correlation on ICG-PDR and no significant difference of respective correlations on ICG-PDR could be shown. Assessment of liver volume and consecutive evaluation of multiple linear regression model revealed a stronger correlation of ICG-PDR with both (SI)-based and T1 relaxometry-based indices. Thus, liver function can be estimated quantitatively from Gd-EOB-DTPA-enhanced MRI-based indices. Here, indices derived from T1 relaxometry are superior to SI-based indices, and all indices benefit from taking into account respective liver volumes

    Electrocardiographic diagnosis of left ventricular hypertrophy in aortic valve disease: evaluation of ECG criteria by cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Left ventricular hypertrophy (LVH) is a hallmark of chronic pressure or volume overload of the left ventricle and is associated with risk of cardiovascular morbidity and mortality. The purpose was to evaluate different electrocardiographic criteria for LVH as determined by cardiovascular magnetic resonance (CMR). Additionally, the effects of concentric and eccentric LVH on depolarization and repolarization were assessed.</p> <p>Methods</p> <p>120 patients with aortic valve disease and 30 healthy volunteers were analysed. As ECG criteria for LVH, we assessed the Sokolow-Lyon voltage/product, Gubner-Ungerleider voltage, Cornell voltage/product, Perugia-score and Romhilt-Estes score.</p> <p>Results</p> <p>All ECG criteria demonstrated a significant correlation with LV mass and chamber size. The highest predictive values were achieved by the Romhilt-Estes score 4 points with a sensitivity of 86% and specificity of 81%. There was no difference in all ECG criteria between concentric and eccentric LVH. However, the intrinsicoid deflection (V6 37 ± 1.0 ms vs. 43 ± 1.6 ms, p < 0.05) was shorter in concentric LVH than in eccentric LVH and amplitudes of ST-segment (V5 -0.06 ± 0.01 vs. -0.02 ± 0.01) and T-wave (V5 -0.03 ± 0.04 vs. 0.18 ± 0.05) in the anterolateral leads (p < 0.05) were deeper.</p> <p>Conclusion</p> <p>By calibration with CMR, a wide range of predictive values was found for the various ECG criteria for LVH with the most favourable results for the Romhilt-Estes score. As electrocardiographic correlate for concentric LVH as compared with eccentric LVH, a shorter intrinsicoid deflection and a significant ST-segment and T-wave depression in the anterolateral leads was noted.</p

    Gd-EOB-DTPA-enhanced MR relaxometry for the detection and staging of liver fibrosis

    Get PDF
    Gd-EOB-DTPA, a liver-specific contrast agent with T1-shortening effects, is routinely used in clinical routine for detection and characterization of focal liver lesions and has recently received increasing attention as a tool for the quantitative analyses of liver function. We report the relationship between the extent of Gd-EOB-DTPA-induced T1 relaxation and the degree of liver fibrosis, which was assessed according to the METAVIR score. For the T1 relaxometry, a transverse 3D VIBE sequence with inline T1 calculation was acquired prior to and 20 minutes after Gd-EOB-DTPA administration. The reduction rates of the T1 relaxation time (rrT1) between the pre- and postcontrast images were calculated, and the optimal cutoff values for the fibrosis stages were determined with receiver operating characteristic (ROC) curve analyses. The rrT1 decreased with the severity of liver fibrosis and regression analysis revealed a significant correlation of the rrT1 with the stage of liver fibrosis (r = -0.906, p = 78% and specificities >= 94% for the differentiation of different fibrosis stages. Gd-EOB-DTPA-enhanced T1 relaxometry is a reliable tool for both the detection of initial hepatic fibrosis and the staging of hepatic fibrosis

    A unique infrared spectropolarimetric unit for CRIRES+

    Get PDF
    High-resolution infrared spectropolarimetry has many science applications in astrophysics. One of them is measuring weak magnetic fields using the Zeeman effect. Infrared domain is particularly advantageous as Zeeman splitting of spectral lines is proportional to the square of the wavelength while the intrinsic width of the line cores increases only linearly. Important science cases include detection and monitoring of global magnetic fields on solar-type stars, study of the magnetic field evolution from stellar formation to the final stages of the stellar life with massive stellar winds, and the dynamo mechanism operation across the boundary between fully- and partially-convective stars. CRIRES+ (the CRIRES upgrade project) includes a novel spectropolarimetric unit (SPU) based on polar- ization gratings. The novel design allows to perform beam-splitting very early in the optical path, directly after the tertiary mirror of the telescope (the ESO Very Large Telescope, VLT), minimizing instrumental polariza- tion. The new SPU performs polarization beam-splitting in the near-infrared while keeping the telescope beam mostly unchanged in the optical domain, making it compatible with the adaptive optics system of the CRIRES+ instrument. The SPU consists of four beam-splitters optimized for measuring circular and linear polarization of spectral lines in YJ and HK bands. The SPU can perform beam switching allowing to correct for throughput in each beam and for variations in detector pixel sensitivity. Other new features of CRIRES+, such as substantially increased wavelength coverage, stability and advanced data reduction pipeline will further enhance the sensitivity of the polarimetric mode. The combination of the SPU, CRIRES+ and the VLT is a unique facility for making major progress in understanding stellar activity. In this article we present the design of the SPU, laboratory measurements of individual components and of the whole unit as well as the performance prediction for the operation at the VLT

    The "+" for CRIRES: enabling better science at infrared wavelength and high spectral resolution at the ESO VLT

    Get PDF
    The adaptive optics (AO) assisted CRIRES instrument is an IR (0.92 - 5.2 μm) high-resolution spectrograph was in operation from 2006 to 2014 at the Very Large Telescope (VLT) observatory. CRIRES was a unique instrument, accessing a parameter space (wavelength range and spectral resolution) up to now largely uncharted. It consisted of a single-order spectrograph providing long-slit (40 arcsecond) spectroscopy with a resolving power up to R=100 000. However the setup was limited to a narrow, single-shot, spectral range of about 1/70 of the central wavelength, resulting in low observing efficiency for many scientific programmes requiring a broad spectral coverage. The CRIRES upgrade project, CRIRES+, transforms this VLT instrument into a cross-dispersed spectrograph to increase the simultaneously covered wavelength range by a factor of ten. A new and larger detector focal plane array of three Hawaii 2RG detectors with 5.3 μm cut-off wavelength will replace the existing detectors. For advanced wavelength calibration, custom-made absorption gas cells and an etalon system will be added. A spectro-polarimetric unit will allow the recording of circular and linear polarized spectra. This upgrade will be supported by dedicated data reduction software allowing the community to take full advantage of the new capabilities offered by CRIRES+. CRIRES+ has now entered its assembly and integration phase and will return with all new capabilities by the beginning of 2018 to the Very Large Telescope in Chile. This article will provide the reader with an update of the current status of the instrument as well as the remaining steps until final installation at the Paranal Observatory

    Characterizing the cross dispersion reflection gratings of CRIRES+

    Get PDF
    The CRIRES+ project attempts to upgrade the CRIRES instrument into a cross dispersed Echelle spectrograph with a simultaneous recording of 8-10 diffraction orders. In order to transform the CRIRES spectrograph into a cross-dispersing instrument, a set of six reflection gratings, each one optimized for one of the wavelength bands CRIRES+ will operate in (YJHKLM), will be used as cross dispersion elements in CRIRES+. Due to the upgrade nature of the project, the choice of gratings depends on the fixed geometry of the instrument. Thus, custom made gratings would be required to achieve the ambitious design goals. Custom made gratings have the disadvantage, though, that they come at an extraordinary price and with lead times of more than 12 months. To mitigate this, a set of off-the-shelf gratings was obtained which had grating parameters very close to the ones being identified as optimal. To ensure that the rigorous specifications for CRIRES+ will be fulfilled, the CRIRES+ team started a collaboration with the Physikalisch-Technische Bundesanstalt Berlin (PTB) to characterize gratings underconditions similar to the operating conditions in CRIRES+ (angle of incidence, wavelength range). The respective test setup was designed in collaboration between PTB and the CRIRES+ consortium. The PTB provided optical radiation sources and calibrated detectors for each wavelength range. With this setup, it is possible to measure the absolute efficiency of the gratings both wavelength dependent and polarization state dependent in a wavelength range from 0.9 μm to 6 μm

    Full system test and early preliminary acceptance Europe results for CRIRES+

    Get PDF
    CRIRES+ is the new high-resolution NIR echelle spectrograph intended to be operated at the platform B of VLT Unit telescope UT3. It will cover from Y to M bands (0.95-5.3um) with a spectral resolution of R = 50000 or R=100000. The main scientific goals are the search of super-Earths in the habitable zone of low-mass stars, the characterisation of transiting planets atmosphere and the study of the origin and evolution of stellar magnetic fields. Based on the heritage of the old adaptive optics (AO) assisted VLT instrument CRIRES, the new spectrograph will present improved optical layout, a new detector system and a new calibration unit providing optimal performances in terms of simultaneous wavelength coverage and radial velocity accuracy (a few m/s). The total observing efficiency will be enhanced by a factor of 10 with respect to CRIRES. An innovative spectro-polarimetry mode will be also offered and a new metrology system will ensure very high system stability and repeatability. Fiinally, the CRIRES+ project will also provide the community with a new data reduction software (DRS) package. CRIRES+ is currently at the initial phase of its Preliminary Acceptance in Europe (PAE) and it will be commissioned early in 2019 at VLT. This work outlines the main results obtained during the initial phase of the full system test at ESO HQ Garching

    Abstracts from the 11th Symposium on Experimental Rhinology and Immunology of the Nose (SERIN 2017)

    Get PDF
    corecore