21 research outputs found

    Ion-liquid based super-capacitors with inner gate diode-like separators

    Full text link
    We demonstrate that the capacitance of ionic-liquid filled supercapacitors is substantially increased by placing a diode-like structure on the separator membrane. We call the structured separator: gate, and demonstrate that the order of a p-n layout with respect to the auxiliary electrode affects the overall cell's capacitance. The smallest ESR and the largest capacitance values are noted when the p-side is facing the auxiliary electrode.Comment: 11 pages, 8 figure

    Nonlinear behavior of vibrating molecules on suspended graphene waveguides

    Full text link
    Suspended graphene waveguides were deposited on micron-scale periodic metal (plasmonic) structures. Raman scattering of test molecules (B. Megaterium), deposited on the waveguides' surface, exhibited azimuthal cycles upon rotation: at these micron scales, spontaneous Raman ought to be independent of phase matching conditions. In addition, we observed angular-selective quadratic intensity dependence contrary to the typical linear behavior of spontaneous Raman. The effects were observed at very modest pump laser intensities (<10 MW/cm2 at the sample surface, oftenly used in Raman experiments). We attributed these observations to nonlinear coupling between the vibrating molecules and surface plasmon polariton (SPP) modes at the molecular vibration frequency. It was assessed that the polariton mode propagates through fairly long distances (over 100 microns).Comment: 18 pages; 3 figures; a journal pape

    Energy Management Algorithm for Resilient Controlled Delivery Grids

    Full text link
    Resilience of the power grid is most challenged at power blackouts since the issues that led to it may not be fully resolved by the time the power is back. In this paper, a Real-Time Energy Management Algorithm (RTEMA) has been developed to increase the resilience of power systems based on the controlled delivery grid (CDG) concept. In a CDG, loads communicate with a central controller, periodically sending requests for power. The central controller runs an algorithm, based on which it may decide whether to grant the requested energy fully or partially. Therefore, the CDG limits loads discretionary access to electric energy until all problems are resolved. The developed algorithm aims at granting most or all of the requested loads, while maintaining the health of the power system (i.e. the voltage at each bus, and the line loading are within acceptable limits), and minimizing the overall losses. An IEEE 30-bus standard Test Case, encountering a blackout condition, with high penetration of microgrids, has been used to test the developed algorithm. Results proved that the developed algorithm with the CDG have the potential to substantially increase the resilience of power systems
    corecore