14 research outputs found

    Data_Sheet_1_Role cognition of assigned nurses supporting Hubei Province in the fight against COVID-19 in China: a hermeneutic phenomenological study.docx

    No full text
    AimsDuring the COVID-19 epidemic, nurses played a crucial role in clinical treatment. As a special group, front-line nurses, especially those assigned to support Hubei Province in the fight against COVID-19 between February and April 2020, brought diverse experiences from different provinces in China in taking care of COVID-19 patients and role cognition. Therefore, our purpose is to explore the real coping experience and role cognition of front-line nurses during the novel coronavirus outbreak to provide relevant experience references for society and managers in the face of such major public health emergencies in the future.DesignThis qualitative study was performed using the phenomenological hermeneutics method.MethodThis is a qualitative phenomenological study. Semi-structured in-depth interviews were used to collect data. The interviewees were 53 front-line nurses who assisted and supported the fight against COVID-19 in Hubei Province during the COVID-19 epidemic. Data were collected through individual online and telephone interviews using a semi-structured interview during March 2020. The COREQ guidance was used to report this study.ResultsThe findings revealed that front-line nurses assisting in the fight against COVID-19 developed a context-specific role cognition of their work and contribution to society. The qualitative analysis of the data revealed 15 sub-categories and 5 main categories. These five themes represented the different roles identified by nurses. The roles included expectations, conflicts, adaptation, emotions, and flow of blessing. Belief in getting better, a sense of honor, and training could help them to reduce feelings of conflict in this role and adapt more quickly.DiscussionThis article discusses the real coping experience and role cognition of front-line nurses during the novel coronavirus epidemic. It provides relevant experience references for society and managers to face similar major public health emergencies in the future. This study makes a significant contribution to the literature because it demonstrates how non-local nurses sent to Hubei to work perceived their roles as part of a larger narrative of patriotism, duty, solidarity, and hope.</p

    CRH induces NT and NTR gene expression in human mast cells.

    No full text
    <p>(A) NT and (B) NTR gene expression in LAD2 cells following incubation with the indicated concentrations of CRH for 6 h. Relative mRNA expression was measured by quantitative qPCR, normalized to GAPDH, and expressed relatively to the untreated cells (control). (C) Western blot analysis of NTR following incubation with CRH (10 µM) for 24 h. Tubulin was used as an internal control. For all the experiments, n = 3; *p<0.05, **p<0.01, compared to control.</p

    Neurotensin and CRH Interactions Augment Human Mast Cell Activation

    Get PDF
    <div><p>Stress affects immunity, but the mechanism is not known. Neurotensin (NT) and corticotropin-releasing hormone (CRH) are secreted under stress in various tissues, and have immunomodulatory actions. We had previously shown that NT augments the ability of CRH to increase mast cell-dependent skin vascular permeability in rodents. Here we show that NT triggered human mast cell degranulation and significantly augmented CRH-induced vascular endothelial growth factor (VEGF) release. Investigation of various signaling molecules indicated that only NF-κB activation was involved. These effects were blocked by pretreatment with the NTR antagonist SR48692. NT induced expression of CRH receptor-1 (CRHR-1), as shown by Western blot and FACS analysis. Interestingly, CRH also induced NTR gene and protein expression. These results indicate unique interactions among NT, CRH, and mast cells that may contribute to auto-immune and inflammatory diseases that worsen with stress.</p> </div

    NT increases VEGF gene expression and protein secretion in human mast cells, which is blocked by a NTR antagonist.

    No full text
    <p>(A) VEGF mRNA expression was assessed following stimulation of LAD2 cells with NT (1, 2 µM) for 6 h; SP was used as a “positive” control to stimulate mast cell degranulation. (B) VEGF secretion from LAD2 cells was measured after stimulation with NT (1, 2, 10 µM) for 24 h; and (C) VEGF release from LAD2 cells treated for 48 hr with NT (1 µM) and/or followed with CRH (1 µM) for 24 h. The augmentation effect of NT and CRH is blocked by pre-treating with the NT antagonist SR 48692 (10 µM) for 30 min. For all experiments, n = 3; *p<0.05, **p<0.01, ***p<0.001 compared to control.</p

    Effect of NT on NF-κB activation in human mast cells.

    No full text
    <p>LAD2 mast cells were pretreated with/without the NTR antagonist SR 48692 (TOCRIS Bioscience, Ellisville, MO) (10 µM) for 30 min, then treated with NT (1 µM) for 5, 10, 20 min. (A) Different molecules were measured with PathScan® Sandwich ELISA Kit (Cell Signaling Technology, Inc. Danvers, MA) and the absorbance for NF-κB was determined spectrophotometrically at 450 nm. (B) NF-κB was determined by EMSA.</p

    NT induces CRHR-1 expression in human mast cells.

    No full text
    <p>(A) LAD2 cells CRHR-1 gene expression was assessed following incubation with different concentrations of NT for 6 h. SP was used as a “positive” control to stimulate mast cell degranulation. Relative mRNA expression was measured by quantitative qPCR, normalized to GAPDH, and expressed relatively to the untreated cells (control). (B) Detection of CRHR-1 in LAD2 cells by Western blot analysis following incubation with NT (10 µM) for 24 or 48 h is shown. For all experiments, n = 3; *p<0.05, **p<0.01, compared to control and (C) CRHR-1 detection by FACS analysis in LAD2 cells following treatment with NT (1, 10 µM) for 48 h; y-axis indicates “counts” of cells, while the x-axis indicates log fluorescence intensity. For all experiments, n = 3; *p<0.05, **p<0.01, compared to control.</p

    NT stimulates degranulation of human mast cells.

    No full text
    <p>(A) LAD2 mast cells and (B) hCBMCs were stimulated with NT for 30 min at 37°C. SP was used as a “positive” control to stimulate mast cell degranulation. The release of β-hexosaminidase (β-hex) was significantly elevated as compared to the control (n = 3; *p<0.01).</p

    In Vivo Optical Detection and Spectral Triangulation of Carbon Nanotubes

    No full text
    In the first in vivo demonstration of spectral triangulation, biocompatible composites of single-walled carbon nanotubes in Matrigel have been surgically implanted into mouse ovaries and then noninvasively detected and located. This optical method deduces the three-dimensional position of a short-wave IR emission source from the wavelength-dependent attenuation of fluorescence in tissues. Measurements were performed with a second-generation optical scanner that uses a light-emitting diode matrix emitting at 736 nm for diffuse specimen excitation. The intrinsic short-wave IR fluorescence of the nanotubes was collected at various positions on the specimen surface, spectrally filtered, and detected by a photon-counting InGaAs avalanche photodiode. Sensitivity studies showed a detection limit of ∼120 pg of nanotubes located beneath ∼3 mm of tissue. In addition, the mass and location of implanted nanotubes could be deduced through spectral triangulation with sub-millimeter accuracy, as validated with the aid of magnetic resonance imaging (MRI) data. Dual-modality imaging combining spectral triangulation with computed tomography or MRI will allow accurate registration of emission centers with anatomical features. These results are a step toward the future use of probes with targeting agents such as antibodies linked to nanotube tags for the noninvasive detection and imaging of tumors in preclinical research on small animals. Translation to the clinic could aid in early detection of ovarian cancer and identification of metastases for resection during primary surgery

    RAS-related GTPases <i>DIRAS1</i> and <i>DIRAS2</i> induce autophagic cancer cell death and are required for autophagy in murine ovarian cancer cells

    No full text
    <p>Among the 3 GTPases in the DIRAS family, <i>DIRAS3/ARHI</i> is the best characterized. <i>DIRAS3</i> is an imprinted tumor suppressor gene that encodes a 26-kDa GTPase that shares 60% homology to RAS and RAP. DIRAS3 is downregulated in many tumor types, including ovarian cancer, where re-expression inhibits cancer cell growth, reduces motility, promotes tumor dormancy and induces macroautophagy/autophagy. Previously, we demonstrated that DIRAS3 is required for autophagy in human cells. <i>Diras3</i> has been lost from the mouse genome during evolutionary re-arrangement, but murine cells can still undergo autophagy. We have tested whether DIRAS1 and DIRAS2, which are homologs found in both human and murine cells, could serve as surrogates to DIRAS3 in the murine genome affecting autophagy and cancer cell growth. Similar to DIRAS3, these 2 GTPases share 40–50% homology to RAS and RAP, but differ from DIRAS3 primarily in the lengths of their N-terminal extensions. We found that DIRAS1 and DIRAS2 are downregulated in ovarian cancer and are associated with decreased disease-free and overall survival. Re-expression of these genes suppressed growth of human and murine ovarian cancer cells by inducing autophagy-mediated cell death. Mechanistically, DIRAS1 and DIRAS2 induce and regulate autophagy by inhibition of the AKT1-MTOR and RAS-MAPK signaling pathways and modulating nuclear localization of the autophagy-related transcription factors FOXO3/FOXO3A and TFEB. Taken together, these data suggest that DIRAS1 and DIRAS2 likely serve as surrogates in the murine genome for DIRAS3, and may function as a backup system to fine-tune autophagy in humans.</p

    Additional file 1: Figure S1. of Induction of autophagy by ARHI (DIRAS3) alters fundamental metabolic pathways in ovarian cancer models

    No full text
    Growth of parental and ARHI-transfected SKOv3 and Hey cells. Effect of Dox treatment on the growth of parental and ARHI-transfected SKOv3 and Hey cells at 24 and 48 h. Western analysis of the effect of ARHI expression on LC3I and LC3II is also presented. Figure S2. Western analysis of GLUT1 expression following ARHI induction. Figure S3. Analysis of ARHI expression and autophagy markers during Atg5 knockdown. Effect of Atg5 knockdown on LC3I and LC3II levels during ARHI expression in SKOv3-ARHI cells. Immunofluorescence of SKOv3-ARHI cells transfected with GFP-LC3 following ARHI induction with and without Atg5 knockdown. Figure S4. Western analysis of LDH and CK expression following ARHI induction. Figure S5. Induction of ARHI expression in vivo. Expression of ARHI and LC3 in subcutaneous SKOv3-ARHI tumors at 24-72 h post-treatment with Dox. Figure S6. Expression of ACC and Phsopho-ACC by RPPA. Figure S7. Fractional 13C label incorporation from 5-13C-Gln in SKOv3-ARHI. The fractional incorporation of the glutamine 13C label into NMR-observable intracellular metabolites following induction of ARHI. (PDF 867 kb
    corecore