4 research outputs found

    Global Impacts of a Bilateral Trade Policy on Ballast Water-Mediated Species Spread Risk: A Case Study of Sino-US Trade

    No full text
    A trade policy could generate both economic and environmental impacts. This work is focused on the impacts of a bilateral trade policy on ballast water-mediated nonindigenous species (NIS) spread risk. Taking the hypothetical Sino-US trade restriction as an example, we integrate a computable general equilibrium model and a higher-order NIS spread risk assessment model to examine the impacts of bilateral trade policy on both the economy and NIS spread risks. We have two important findings. First, the Sino-US trade restriction would cause decreases in NIS spread risks to China and the US, as well as to three quarters of worldwide countries/regions. However, the rest one fourth would experience increased NIS spread risks. Second, the relationship between changes in exports and changes in NIS spread risks might not be directly proportional. This is observed with 46% of countries and regions that would see their exports increase but their NIS spread risks drop, with positive impacts on both their economies and environment under the Sino-US trade restriction. These results reveal both broader global impacts as well as the decoupled economic and ecological impacts of a bilateral trade policy. These broader impacts demonstrate the necessity for national governments, which are parties to bilateral agreements to give due consideration to the economic and environmental impacts on countries and regions outside of the agreement

    Global Impacts of a Bilateral Trade Policy on Ballast Water-Mediated Species Spread Risk: A Case Study of Sino-US Trade

    No full text
    A trade policy could generate both economic and environmental impacts. This work is focused on the impacts of a bilateral trade policy on ballast water-mediated nonindigenous species (NIS) spread risk. Taking the hypothetical Sino-US trade restriction as an example, we integrate a computable general equilibrium model and a higher-order NIS spread risk assessment model to examine the impacts of bilateral trade policy on both the economy and NIS spread risks. We have two important findings. First, the Sino-US trade restriction would cause decreases in NIS spread risks to China and the US, as well as to three quarters of worldwide countries/regions. However, the rest one fourth would experience increased NIS spread risks. Second, the relationship between changes in exports and changes in NIS spread risks might not be directly proportional. This is observed with 46% of countries and regions that would see their exports increase but their NIS spread risks drop, with positive impacts on both their economies and environment under the Sino-US trade restriction. These results reveal both broader global impacts as well as the decoupled economic and ecological impacts of a bilateral trade policy. These broader impacts demonstrate the necessity for national governments, which are parties to bilateral agreements to give due consideration to the economic and environmental impacts on countries and regions outside of the agreement

    Global Impacts of a Bilateral Trade Policy on Ballast Water-Mediated Species Spread Risk: A Case Study of Sino-US Trade

    No full text
    A trade policy could generate both economic and environmental impacts. This work is focused on the impacts of a bilateral trade policy on ballast water-mediated nonindigenous species (NIS) spread risk. Taking the hypothetical Sino-US trade restriction as an example, we integrate a computable general equilibrium model and a higher-order NIS spread risk assessment model to examine the impacts of bilateral trade policy on both the economy and NIS spread risks. We have two important findings. First, the Sino-US trade restriction would cause decreases in NIS spread risks to China and the US, as well as to three quarters of worldwide countries/regions. However, the rest one fourth would experience increased NIS spread risks. Second, the relationship between changes in exports and changes in NIS spread risks might not be directly proportional. This is observed with 46% of countries and regions that would see their exports increase but their NIS spread risks drop, with positive impacts on both their economies and environment under the Sino-US trade restriction. These results reveal both broader global impacts as well as the decoupled economic and ecological impacts of a bilateral trade policy. These broader impacts demonstrate the necessity for national governments, which are parties to bilateral agreements to give due consideration to the economic and environmental impacts on countries and regions outside of the agreement

    Comprehensive Assessment for the Impacts of S/IVOC Emissions from Mobile Sources on SOA Formation in China

    No full text
    Semivolatile/intermediate-volatility organic compounds (S/IVOCs) from mobile sources are essential SOA contributors. However, few studies have comprehensively evaluated the SOA contributions of S/IVOCs by simultaneously comparing different parameterization schemes. This study used three SOA schemes in the CMAQ model with a measurement-based emission inventory to quantify the mobile source S/IVOC-induced SOA (MS–SI-SOA) for 2018 in China. Among different SOA schemes, SOA predicted by the 2D-VBS scheme was in the best agreement with observations, but there were still large deviations in a few regions. Three SOA schemes showed the peak value of annual average MS–SI-SOA was up to 0.6 ± 0.3 μg/m3. High concentrations of MS–SI-SOA were detected in autumn, while the notable relative contribution of MS–SI-SOA to total SOA was predicted in the coastal areas in summer, with a regional average contribution up to 20 ± 10% in Shanghai. MS–SI-SOA concentrations varied by up to 2 times among three SOA schemes, mainly due to the discrepancy in SOA precursor emissions and chemical reactions, suggesting that the differences between SOA schemes should also be considered in modeling studies. These findings identify the hotspot areas and periods for MS–SI-SOA, highlighting the importance of S/IVOC emission control in the future upgrading of emission standards
    corecore