65 research outputs found
Genome-resolved metagenomics provides insights into the microbial-mediated sulfur and nitrogen cycling in temperate seagrass meadows
The presence of seagrasses facilitates numerous microbial-mediated biogeochemical cycles, with sulfur- and nitrogen-cycling microorganisms playing crucial roles as regulators. Despite efforts to comprehend the diversity of microbes in seagrass ecosystems, the metabolic functions of these benthic microorganisms in seagrass sediments remain largely unknown. Using metagenomics, we provide insights into the sulfur- and nitrogen-cycling pathways and key metabolic capacities of microorganisms in both Z. japonica-colonized and unvegetated sediments over a seasonal period. Taxonomic analysis of N and S cycling genes revealed that δ- and γ- proteobacteria dominated the benthic sulfate-reducing bacteria, while α- and γ-proteobacteria played a significant role in the sulfur-oxidation processes. The proteobacterial lineages were also major contributors to the benthic nitrogen cycling. However, at a finer taxonomic resolution, microbial participants in different processes were observed to be highly diverse and mainly driven by environmental factors such as temperature and salinity. The gene pools of sulfur and nitrogen cycles in the seagrass sediments were dominated by genes involved in sulfide oxidation (fccA) and hydroxylamine oxidation (hao), respectively. Seagrass colonization elevated the relative abundance of genes responsible for sulfite production (phsC), hydroxylamine oxidation (hao), and nitrogen fixation (nifK), but suppressed sulfur oxidation (soxXYZ) and denitrification (nosZ and nirS). The prevalence of proteobacterial lineages functioned with versatile capabilities in both sulfur and nitrogen cycles in seagrass ecosystems, highlighting tight couplings between these processes, which was further supported by the recovery of 83 metagenome-assembled genomes (MAGs). These findings broaden our understanding of the biogeochemical processes that are mediated by microorganisms in seagrass ecosystems
Suppression of MAPK11 or HIPK3 reduces mutant Huntingtin levels in Huntington's disease models.
Most neurodegenerative disorders are associated with accumulation of disease-relevant proteins. Among them, Huntington disease (HD) is of particular interest because of its monogenetic nature. HD is mainly caused by cytotoxicity of the defective protein encoded by the mutant Huntingtin gene (HTT). Thus, lowering mutant HTT protein (mHTT) levels would be a promising treatment strategy for HD. Here we report two kinases HIPK3 and MAPK11 as positive modulators of mHTT levels both in cells and in vivo. Both kinases regulate mHTT via their kinase activities, suggesting that inhibiting these kinases may have therapeutic values. Interestingly, their effects on HTT levels are mHTT-dependent, providing a feedback mechanism in which mHTT enhances its own level thus contributing to mHTT accumulation and disease progression. Importantly, knockout of MAPK11 significantly rescues disease-relevant behavioral phenotypes in a knockin HD mouse model. Collectively, our data reveal new therapeutic entry points for HD and target-discovery approaches for similar diseases
Seagrass vegetation affect the vertical organization of microbial communities in sediment
Seagrasses represent high primary productivity and provide important ecosystem services to the marine environment. Seagrass-associated microbial communities are playing essential ecological functional roles in biogeochemical cycles. However, little is known about the effect of seagrass vegetation on microbial communities in sediment. In the present study, the sediment cores of seagrass bed (dominated by Zostera japonica and Zostera marine) and degradation area in Swan Lake (China) were sampled; then, biogeochemical parameters were analyzed, and microbial community composition was investigated by using high-throughput sequencing of the 16S rRNA gene.
The results showed that the presence of seagrass could lead to a decrease in the richness and diversity of the microbial community. In the vertical direction, a pronounced shift from Proteobacteria-dominated upper layers to Chloroflexi and Crenarchaeota-dominated deep layers in all sediment cores were observed. Besides, Bathyarchaeia is more abundant at degradation area, while Vibrionaceae, Sulfurovum and Lokiarchaeial overrepresent at the seagrass bed area. Vibrionaceae was abundant in the rhizosphere of Z. marina and Z. japonica, and the proportions reached 84.45% and 63.89%, respectively. This enrichment of Vibrio spp. may be caused by the macrobenthic species near the seagrass rhizosphere, and these Vibrio spp. reduced the diversity and stability of microbial community, which may lead to the degradation of seagrass.
This study would provide clues for the distribution patterns and niche preferences of seagrass microbiome. The conservation strategy of seagrass would be further elucidated from the perspective of the microbiome
End-to-End Deep Learning of Non-rigid Groupwise Registration and Reconstruction of Dynamic MRI.
Temporal correlation has been exploited for accelerated dynamic MRI reconstruction. Some methods have modeled inter-frame motion into the reconstruction process to produce temporally aligned image series and higher reconstruction quality. However, traditional motion-compensated approaches requiring iterative optimization of registration and reconstruction are time-consuming, while most deep learning-based methods neglect motion in the reconstruction process. We propose an unrolled deep learning framework with each iteration consisting of a groupwise diffeomorphic registration network (GRN) and a motion-augmented reconstruction network. Specifically, the whole dynamic sequence is registered at once to an implicit template which is used to generate a new set of dynamic images to efficiently exploit the full temporal information of the acquired data via the GRN. The generated dynamic sequence is then incorporated into the reconstruction network to augment the reconstruction performance. The registration and reconstruction networks are optimized in an end-to-end fashion for simultaneous motion estimation and reconstruction of dynamic images. The effectiveness of the proposed method is validated in highly accelerated cardiac cine MRI by comparing with other state-of-the-art approaches
Reduction of selenite and tellurite by a highly metal-tolerant marine bacterium
Selenium (Se) and tellurium (Te) contaminations in soils and water bodies have been widely reported in recent years. Se(IV) and Te(IV) were regarded as their most dangerous forms. Microbial treatments of Se(IV)- and Te(IV)-containing wastes are promising approaches because of their environmentally friendly and sustainable advantages. However, the salt-tolerant microbial resources that can be used for selenium/tellurium pollution control are still limited since industrial wastewaters usually contain a large number of salts. In this study, a marine Shewanella sp. FDA-1 (FDA-1) was reported for efficient Se(IV) and Te(IV) reduction under saline conditions. Process and product analyses were performed to investigate the bioreduction processes of Se(IV) and Te(IV). The results showed that FDA-1 can effectively reduce Se(IV) and Te(IV) to Se-0 and Te-0 Se(IV)/Te(IV) to Se-0/Te-0 in 72 h, which were further confirmed by XRD and XPS analyses. In addition, enzymatic and RT-qPCR assays showed that flavin-related proteins, reductases, dehydrogenases, etc., could be involved in the bioreduction of Se(IV)/Te(IV). Overall, our results demonstrate the ability of FDA-1 to reduce high concentrations of Se(IV)/or Te(IV) to Se-0/or Te-0 under saline conditions and thus provide efficient microbial candidate for controlling Se and Te pollution
Molecular diversity and biogeography of benthic microeukaryotes in temperate seagrass (Zostera japonica) systems of northern China
The productivity and health of seagrass depend on the combined inputs of nutrients from the water and sediments in which they grow and the microbiota with which they live intimately. However, little is known about the composition and diversity pattern of single-celled benthic eukaryotes in seagrass meadows. Here, we investigated how the structure and diversity of the benthic microeukaryotic community vary with respect to season, location, and seagrass colonization, by applying 18S rRNA gene amplicon sequencing for 96 surface sediment samples that were collected from three different seagrass habitats through four seasons. We found that benthic microeukaryotic communities associated with seagrass Zostera japonica exhibited remarkable spatial and seasonal variations, as well as differences between vegetated and unvegetated sediments. Diatoms and dinoflagellates predominated in the benthic microeukaryotic communities, but they were inversely correlated and displaced each other as the dominant microbial group in different seasons or habitats. Mucoromycota was more prevalent in vegetated sediments, whereas Lobulomycetales and Chytridiales had higher proportions in unvegetated sites. Total organic carbon and total organic nitrogen were the most important environmental factors in driving the microeukaryotic assemblages and diversity. Our study expands the available knowledge on the biogeographic distribution patterns and niche preferences for benthic microeukaryotes in seagrass systems
Seasonal Dynamics of Bathyarchaeota-Dominated Benthic Archaeal Communities Associated with Seagrass (Zostera japonica) Meadows
Little is known about the seasonal dynamic of archaeal communities and their potential ecological functions in temperate seagrass ecosystems. In this study, seasonal changes in diversity, community structure, and potential metabolic functions of benthic archaea in surface sediments of two seagrass meadows along the northern Bohai Sea in China were investigated using Miseq sequencing of the 16S rRNA gene and Tax4Fun2 functional prediction. Overall, Crenarchaeota (mainly Bathy-15, Bathy-8, and Bathy-6) dominated, followed by Thermoplasmatota, Asgardarchaeota, and Halobacterota, in terms of alpha diversities and relative abundance. Significant seasonal changes in the entire archaeal community structure were observed. The major phyla Methanobacteria, Nitrosopumilales, and genus Methanolobus had higher proportions in spring, while MBG-D and Bathyarchaeota were more abundant in summer and autumn, respectively. Alpha diversities (Shannon and Simpson) were the highest in summer and the lowest in autumn (ANOVA test, p < 0.05). Salinity, total organic carbon, and total organic nitrogen were the most significant factors influencing the entire archaeal community. Higher cellulose and hemicellulose degradation potentials occurred in summer, while methane metabolism potentials were higher in winter. This study indicated that season had strong effects in modulating benthic archaeal diversity and functional potentials in the temperate seagrass ecosystems
Deciphering variations in the surficial bacterial compositions and functional profiles in the intersection between North and South Yellow Sea
The coastal ocean systems play paramount role in the nutrient biogeochemistry because of its interconnected environment. To gain a novel insight into coupling relationships between bacterial community, functioning properties and nutrient metabolism, we conducted analysis on the patterns and driving factors of planktonic bacterial functional community across subsurface water of marine ranching near the Yellow Sea in both summer and winter. Illumina HiSeq Sequencing and a corresponding set of biogeochemical data were used to assess distribution patterns of taxa, adaptive mechanism and metabolic function. Results demonstrated that Proteobacteria, Cyanobacteria, Actinobacteriota and Bacteroidota were dominant phyla both in summer and winter. Taxonomic profiles related to nutrient variation were found to be highly correlated with Dissolved Oxygen (DO) and Chlorophyll fluorescence (FLUO), and distinct diversity differences were also found between summer and winter samples. Functional activity in summer associated with the relative abundance of phototrophy and photoautotrophy were the highest in the subsurface water, while in winter the dominant functional properties were mainly include chemoheterotrophy and aerobic_ chemoheterotrophy. A significant difference related to functional activity between summer and winter, mainly representing ligninolysis and iron_respiration. In general, our study provides a framework for understanding the relative importance of environmental factors, temperature variation and nutrient availability in shaping the metabolic processes of aquatic microorganisms, particularly in ocean mariculture systems
- …