12 research outputs found
De Novo Heterozygous POLR2A Variants Cause a Neurodevelopmental Syndrome with Profound Infantile-Onset Hypotonia
Item does not contain fulltex
Understanding acute metabolic decompensation in propionic and methylmalonic acidemias: A deep metabolic phenotyping approach
Background: Pathophysiology of life-threatening acute metabolic decompensations (AMD) in propionic acidemia (PA) and isolated methylmalonic acidemia (MMA) is insufficiently understood. Here, we study the metabolomes of PA and MMA patients over time, to improve insight in which biochemical processes are at play during AMD. Methods: Longitudinal data from clinical chemistry analyses and metabolic assays over the life-course of 11 PA and 13 MMA patients were studied retrospectively. Direct-infusion high-resolution mass spectrometry was performed on 234 and 154 remnant dried blood spot and plasma samples of PA and MMA patients, respectively. In addition, a systematic literature search was performed on reported biomarkers. All results were integrated in an assessment of biochemical processes at play during AMD. Results: We confirmed many of the metabolite alterations reported in literature, including increases of plasma valine and isoleucine during AMD in PA patients. We revealed that plasma leucine and phenylalanine, and urinary pyruvic acid were increased during AMD in PA patients. 3-hydroxyisovaleric acid correlated positively with plasma ammonia. We found that known diagnostic biomarkers were not significantly further increased, while intermediates of the branched-chain amino acid (BCAA) degradation pathway were significantly increased during AMD. Conclusions: We revealed that during AMD in PA and MMA, BCAA and BCAA intermediates accumulate, while known diagnostic biomarkers remain essentially unaltered. This implies that these acidic BCAA intermediates are responsible for metabolic acidosis. Based on this, we suggest to measure plasma 3-hydroxyisovaleric acid and urinary ketones or 3-hydroxybutyric acid for the biochemical follow-up of a patient's metabolic stability
Accurate discrimination of Hartnup disorder from other aminoacidurias using a diagnostic ratio
Introduction: Hartnup disorder is caused by a deficiency of the sodium dependent B 0 AT1 neutral amino acid transporter in the proximal kidney tubules and jejunum. Biochemically, Hartnup disorder is diagnosed via amino acid excretion patterns. However, these patterns can closely resemble amino acid excretion patterns of generalized aminoaciduria, which may induce a risk for misdiagnosis and preclusion from treatment. Here we explore whether calculating a diagnostic ratio could facilitate correct discrimination of Hartnup disorder from other aminoacidurias. Methods: 27 amino acid excretion patterns from 11 patients with genetically confirmed Hartnup disorder were compared to 68 samples of 16 patients with other aminoacidurias. Amino acid fold changes were calculated by dividing the quantified excretion values over the upper limit of the age-adjusted reference value. Results: Increased excretion of amino acids is not restricted to amino acids classically related to Hartnup disorder ("Hartnup amino acids", HAA), but also includes many other amino acids, not classically related to Hartnup disorder ("other amino acids", OAA). The fold change ratio of HAA over OAA was 6.1 (range: 2.4-9.6) in the Hartnup cohort, versus 0.2 (range: 0.0-1.6) in the aminoaciduria cohort ( p < .0001), without any overlap observed between the cohorts. Discussion: Excretion values of amino acids not classically related to Hartnup disorder are frequently elevated in patients with Hartnup disorder, which may cause misdiagnosis as generalized aminoaciduria and preclusion from vitamin B3 treatment. Calculation of the HAA/OAA ratio improves diagnostic differentiation of Hartnup disorder from other aminoacidurias
Untargeted metabolomics for metabolic diagnostic screening with automated data interpretation using a knowledge-based algorithm
Untargeted metabolomics may become a standard approach to address diagnostic requests, but, at present, data interpretation is very labor-intensive. To facilitate its implementation in metabolic diagnostic screening, we developed a method for automated data interpretation that preselects the most likely inborn errors of metabolism (IEM). The input parameters of the knowledge-based algorithm were (1) weight scores assigned to 268 unique metabolites for 119 different IEM based on literature and expert opinion, and (2) metabolite Z-scores and ranks based on direct-infusion high resolution mass spectrometry. The output was a ranked list of differential diagnoses (DD) per sample. The algorithm was first optimized using a training set of 110 dried blood spots (DBS) comprising 23 different IEM and 86 plasma samples comprising 21 different IEM. Further optimization was performed using a set of 96 DBS consisting of 53 different IEM. The diagnostic value was validated in a set of 115 plasma samples, which included 58 different IEM and resulted in the correct diagnosis being included in the DD of 72% of the samples, comprising 44 different IEM. The median length of the DD was 10 IEM, and the correct diagnosis ranked first in 37% of the samples. Here, we demonstrate the accuracy of the diagnostic algorithm in preselecting the most likely IEM, based on the untargeted metabolomics of a single sample. We show, as a proof of principle, that automated data interpretation has the potential to facilitate the implementation of untargeted metabolomics for metabolic diagnostic screening, and we provide suggestions for further optimization of the algorithm to improve diagnostic accuracy
Aspartylglycosamine is a biomarker for NGLY1-CDDG, a congenital disorder of deglycosylation
BACKGROUND: NGLY1-CDDG is a congenital disorder of deglycosylation caused by a defective peptide:N-glycanase (PNG). To date, all but one of the reported patients have been diagnosed through whole-exome or whole-genome sequencing, as no biochemical marker was available to identify this disease in patients. Recently, a potential urinary biomarker was reported, but the data presented suggest that this marker may be excreted intermittently. METHODS: In this study, we performed untargeted direct-infusion high-resolution mass spectrometry metabolomics in seven dried blood spots (DBS) from four recently diagnosed NGLY1-CDDG patients, to test for small-molecule biomarkers, in order to identify a potential diagnostic marker. Results were compared to 125 DBS of healthy controls and to 238 DBS of patients with other diseases. RESULTS: We identified aspartylglycosamine as the only significantly increased compound with a median Z-score of 4.8 (range: 3.8-8.5) in DBS of NGLY1-CDDG patients, compared to a median Z-score of -0.1 (range: -2.1-4.0) in DBS of healthy controls and patients with other diseases. DISCUSSION: The increase of aspartylglycosamine can be explained by lack of function of PNG. PNG catalyzes the cleavage of the proximal N-acetylglucosamine residue of an N-glycan from the asparagine residue of a protein, a step in the degradation of misfolded glycoproteins. PNG deficiency results in a single N-acetylglucosamine residue left attached to the asparagine residue which results in free aspartylglycosamine when the glycoprotein is degraded. Thus, we here identified aspartylglycosamine as the first potential small-molecule biomarker in DBS for NGLY1-CDDG, making a biochemical diagnosis for NGLY1-CDDG potentially feasible
High protein prescription in methylmalonic and propionic acidemia patients and its negative association with long-term outcome
Background and objective: Methylmalonic acidemia (MMA) and propionic acidemia (PA) are inborn errors of metabolism. While survival of MMA and PA patients has improved in recent decades, long-term outcome is still unsatisfactory. A protein restricted diet is the mainstay for treatment. Additional amino acid mixtures (AAM) can be prescribed if natural protein is insufficient. It is unknown if dietary treatment can have an impact on outcome. Design: We performed a nationwide retrospective cohort study and evaluated both longitudinal dietary treatment and clinical course of Dutch MMA and PA patients. Protein prescription was compared to the recommended daily allowances (RDA); the safe level of protein intake as provided by the World Health Organization. The association of longitudinal dietary treatment with long-term outcome was evaluated. Results: The cohort included 76 patients with a median retrospective follow-up period of 15 years (min–max: 0–48 years) and a total of 1063 patient years on a protein restricted diet. Natural protein prescription exceeded the RDA in 37% (470/1287) of all prescriptions and due to AAM prescription, the total protein prescription exceeded RDA in 84% (1070/1277). Higher protein prescriptions were associated with adverse outcomes in severely affected patients. In PA early onset patients a higher natural protein prescription was associated with more frequent AMD. In MMA vitamin B12 unresponsive patients, both a higher total protein prescription and AAM protein prescription were associated with more mitochondrial complications. A higher AAM protein prescription was associated with an increased frequency of cognitive impairment in the entire. Conclusion: Protein intake in excess of recommendations is frequent and is associated with poor outcome
Aspartylglycosamine is a biomarker for NGLY1-CDDG, a congenital disorder of deglycosylation
Background: NGLY1-CDDG is a congenital disorder of deglycosylation caused by a defective peptide:N-glycanase (PNG). To date, all but one of the reported patients have been diagnosed through whole-exome or whole-genome sequencing, as no biochemical marker was available to identify this disease in patients. Recently, a potential urinary biomarker was reported, but the data presented suggest that this marker may be excreted intermittently. Methods: In this study, we performed untargeted direct-infusion high-resolution mass spectrometry metabolomics in seven dried blood spots (DBS) from four recently diagnosed NGLY1-CDDG patients, to test for small-molecule biomarkers, in order to identify a potential diagnostic marker. Results were compared to 125 DBS of healthy controls and to 238 DBS of patients with other diseases. Results: We identified aspartylglycosamine as the only significantly increased compound with a median Z-score of 4.8 (range: 3.8–8.5) in DBS of NGLY1-CDDG patients, compared to a median Z-score of −0.1 (range: −2.1–4.0) in DBS of healthy controls and patients with other diseases. Discussion: The increase of aspartylglycosamine can be explained by lack of function of PNG. PNG catalyzes the cleavage of the proximal N-acetylglucosamine residue of an N-glycan from the asparagine residue of a protein, a step in the degradation of misfolded glycoproteins. PNG deficiency results in a single N-acetylglucosamine residue left attached to the asparagine residue which results in free aspartylglycosamine when the glycoprotein is degraded. Thus, we here identified aspartylglycosamine as the first potential small-molecule biomarker in DBS for NGLY1-CDDG, making a biochemical diagnosis for NGLY1-CDDG potentially feasible
Cross-Omics: Integrating Genomics with Metabolomics in Clinical Diagnostics
Next-generation sequencing and next-generation metabolic screening are, independently, increasingly applied in clinical diagnostics of inborn errors of metabolism (IEM). Integrated into a single bioinformatic method, these two –omics technologies can potentially further improve the diagnostic yield for IEM. Here, we present cross-omics: a method that uses untargeted metabolomics results of patient’s dried blood spots (DBSs), indicated by Z-scores and mapped onto human metabolic pathways, to prioritize potentially affected genes. We demonstrate the optimization of three parameters: (1) maximum distance to the primary reaction of the affected protein, (2) an extension stringency threshold reflecting in how many reactions a metabolite can participate, to be able to extend the metabolite set associated with a certain gene, and (3) a biochemical stringency threshold reflecting paired Z-score thresholds for untargeted metabolomics results. Patients with known IEMs were included. We performed untargeted metabolomics on 168 DBSs of 97 patients with 46 different disease-causing genes, and we simulated their whole-exome sequencing results in silico. We showed that for accurate prioritization of disease-causing genes in IEM, it is essential to take into account not only the primary reaction of the affected protein but a larger network of potentially affected metabolites, multiple steps away from the primary reaction
De novo heterozygous POLR2A variants cause a neurodevelopmental syndrome with profound infantile-onset hypotonia
The RNA polymerase II complex (pol II) is responsible for transcription of all ∼21,000 human protein-encoding genes. Here, we describe sixteen individuals harboring de novo heterozygous variants in POLR2A, encoding RPB1, the largest subunit of pol II. An iterative approach combining structural evaluation and mass spectrometry analyses, the use of S. cerevisiae as a model system, and the assessment of cell viability in HeLa cells allowed us to classify eleven variants as probably disease-causing and four variants as possibly disease-causing. The significance of one variant remains unresolved. By quantification of phenotypic severity, we could distinguish mild and severe phenotypic consequences of the disease-causing variants. Missense variants expected to exert only mild structural effects led to a malfunctioning pol II enzyme, thereby inducing a dominant-negative effect on gene transcription. Intriguingly, individuals carrying these variants presented with a severe phenotype dominated by profound infantile-onset hypotonia and developmental delay. Conversely, individuals carrying variants expected to result in complete loss of function, thus reduced levels of functional pol II from the normal allele, exhibited the mildest phenotypes. We conclude that subtle variants that are central in functionally important domains of POLR2A cause a neurodevelopmental syndrome characterized by profound infantile-onset hypotonia and developmental delay through a dominant-negative effect on pol-II-mediated transcription of DNA