6 research outputs found
Spatiotemporal Patterns in pCO2 and Nutrient Concentration: Implications for the CO2 Variations in a Eutrophic Lake
Lakes are considered sentinels of terrestrial environmental change. Nevertheless, our understanding of the impact of catchment anthropogenic activities on nutrients and the partial pressure of carbon dioxide (pCO2, an important parameter in evaluating CO2 levels in water) is still restrained by the scarcity of long-term observations. In this study, spatiotemporal variations in nutrient concentrations (total nitrogen: TN, total phosphorus: TP, nitrate: NO3−–N, and ammonium: NH4+–N) pCO2 in Taihu Lake were analyzed from 1992 to 2006, along with the gross domestic product (GDP) and wastewater discharge (WD) of its catchment. The study area was divided into three zones to characterize spatial heterogeneity in water quality: the inflow river mouth zone (Liangxi River and Zhihugang River), transition zone (Meiliang Bay), and central Taihu Lake, respectively. It is abundantly obvious that external nutrient inputs from the catchment have a notable impact on the water parameters in Taihu Lake, because nutrient concentrations and pCO2 were substantially higher in the inflow river mouth zone than in the open water of Meiliang Bay and central Taihu Lake. The GDP and WD of Taihu Lake’s catchment were significantly and positively correlated with the temporal variation in nutrient concentrations and pCO2, indicating that catchment development activities had an impact on Taihu Lake’s water quality. In addition, pCO2 was negatively correlated with chlorophyll a and the saturation of dissolved oxygen, but positively correlated with nutrient concentrations (e.g., TN, TP, and NH4+–N) in inflow river mouth zone of Taihu Lake. The findings of this study reveal that the anthropogenic activities of the catchment not only affect the water quality of Taihu Lake but also the CO2 concentrations. Consequently, catchment effects require consideration when modeling and estimating CO2 emissions from the extensively human-impacted eutrophic lakes
Assessing 30-Year Land Use and Land Cover Change and the Driving Forces in Qianjiang, China, Using Multitemporal Remote Sensing Images
Assessing Land Use and Land Cover Change (LULCC) related with aquaculture areas is vital for evaluating the impacts of aquaculture ponds on the environment and developing a sustainable aquaculture production system. Most studies analyze changes in aquaculture land in coastal areas, and little research focuses on the inland area, where the conversions between agriculture and aquaculture land is primarily driven by socioeconomic factors. This study assessed LULCC related to aquaculture areas in Qianjiang City, China, from 1990 to 2022, using multitemporal Landsat images and a combination of decision tree classifier and visual interpretation. The LULCC was analyzed by the transition matrix. Results showed that the main LULC type was farmland, which accounted for more than 70% of the study area from 1990 to 2022. The built-up and aquaculture land showed an increasing trend year by year. In contrast, there was a gradual decline in forest/grass land from 1990 to 2016, and then its area increased slightly from 2016 to 2022 due to the policy of returning farmland to forest. Water areas were mainly composed of rivers and ponds, with subtle changes during the study period. The main driving forces of LULCC in Qianjiang City were economic and policy factors, with rapid GDP growth and government policies being the dominant factors
Targeting Mitochondrial Complex I Deficiency in MPP+/MPTP-induced Parkinson’s Disease Cell Culture and Mouse Models by Transducing Yeast NDI1 Gene
Abstract Background MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), original found in synthetic heroin, causes Parkinson’s disease (PD) in human through its metabolite MPP+ by inhibiting complex I of mitochondrial respiratory chain in dopaminergic neurons. This study explored whether yeast internal NADH-quinone oxidoreductase (NDI1) has therapeutic effects in MPTP- induced PD models by functionally compensating for the impaired complex I. MPP+-treated SH-SY5Y cells and MPTP-treated mice were used as the PD cell culture and mouse models respectively. The recombinant NDI1 lentivirus was transduced into SH-SY5Y cells, or the recombinant NDI1 adeno-associated virus (rAAV5-NDI1) was injected into substantia nigra pars compacta (SNpc) of mice. Results The study in vitro showed NDI1 prevented MPP+-induced change in cell morphology and decreased cell viability, mitochondrial coupling efficiency, complex I-dependent oxygen consumption, and mitochondria-derived ATP. The study in vivo revealed that rAAV-NDI1 injection significantly improved the motor ability and exploration behavior of MPTP-induced PD mice. Accordingly, NDI1 notably improved dopaminergic neuron survival, reduced the inflammatory response, and significantly increased the dopamine content in striatum and complex I activity in substantia nigra. Conclusions NDI1 compensates for the defective complex I in MPP+/MPTP-induced models, and vastly alleviates MPTP-induced toxic effect on dopaminergic neurons. Our study may provide a basis for gene therapy of sporadic PD with defective complex I caused by MPTP-like substance
Additional file 1 of Targeting Mitochondrial Complex I Deficiency in MPP+/MPTP-induced Parkinson’s Disease Cell Culture and Mouse Models by Transducing Yeast NDI1 Gene
Supplementary Figure 1. NDI1 gene was efficiently expressed and located in mitochondria after transduced into SH-SY5Y cells. A: The GFP (NDI1)-positive cell rate was detected by flow cytometry 120 h post-transduction. B: The HA (NDI1) expression was detected by Western blot. C: Co-localization of mitochondria and HA (NDI1) observed by confocal microscope. The cells were co-stained with red (MitoTracker), green (HA antibody) and blue (DAPI) (scale bar: 25 ÎĽm