143 research outputs found

    The catalogues and mid-infrared environment of Interstellar OH Masers

    Full text link
    Data for a number of OH maser lines have been collected from surveys. The posi- tions are compared to recent mid-infrared (MIR) surveys such as Spitzer-GLIMPSE and WISE, restricting the comparison to point sources. The colors and intensities of the IR sources are compared. There are many 18 cm OH masers, but far fewer in lines arising from higher energy levels. We also make a comparison with the 5 cm Class II methanol masers. We have divided the results into 3 subsamples: those associated with OH masers only, those associated with OH masers and Class II methanol masers, and those only associated with Class II methanol masers. There are no obvious dif- ferences in the color-color or color-magnitude results for the GLIMPSE point sources. However, according to the results from the WISE 22 {\mu}m survey, the sources associ- ated with OH masers are brighter than those associated with methanol masers. We interpret the presence of OH and methanol masers mark the locations of regions where stars are forming. The OH masers are located on the borders of sharp features found in the IR. These are referred to as bubbles. If the OH masers mark the positions of protostars, the result provides indirect evidence for triggered star formation caused by the expansion of the bubbles.Comment: 23 pages (11 pages online only), 12 figures, Accepted. Monthly Notices of the Royal Astronomical Society,201

    Proximate grassland and shrub-encroached sites show dramatic restructuring of soil bacterial communities.

    Get PDF
    Background: Changes in aboveground community composition and diversity following shrub encroachment have been studied extensively. Recently, shrub encroachment was associated with differences in belowground bacterial communities relative to non-encroached grassland sites hundreds of meters away. This spatial distance between grassland and shrub sites left open the question of how soil bacterial communities associated with different vegetation types might differ within the same plot location. Methods: We examined soil bacterial communities between shrub-encroached and adjacent (one m apart) grassland soils in Chinese Inner Mongolian, using high-throughput sequencing method (Illumina, San Diego, CA, USA). Results: Shrub-encroached sites were associated with dramatic restructuring of soil bacterial community composition and predicted metabolic function, with significant increase in bacterial alpha-diversity. Moreover, bacterial phylogenic structures showed clustering in both shrub-encroached and grassland soils, suggesting that each vegetation type was associated with a unique and defined bacterial community by niche filtering. Finally, soil organic carbon (SOC) was the primary driver varied with shifts in soil bacterial community composition. The encroachment was associated with elevated SOC, suggesting that shrub-mediated shifts in SOC might be responsible for changes in belowground bacterial community. Discussion: This study demonstrated that shrub-encroached soils were associated with dramatic restructuring of bacterial communities, suggesting that belowground bacterial communities appear to be sensitive indicators of vegetation type. Our study indicates that the increased shrub-encroached intensity in Inner Mongolia will likely trigger large-scale disruptions in both aboveground plant and belowground bacterial communities across the region

    Overestimated biomass carbon pools of the northern mid- and high latitude forests

    Get PDF
    The biomass carbon (C) stock of forests is one of key parameters for the study of regional and global carbon cycles. Literature reviews shows that inventory-based forest C stocks documented for major countries in the middle and high northern latitudes fall within a narrow range of 36-56 Mg C ha(-1) with an overall area-weighted mean of 43.6 Mg C ha(-1). These estimates are 0.40 to 0.71 times smaller than those (61-108 Mg C ha(-1)) used in previous analysis of balancing the global carbon budget. A statistical analysis, using the global forest biomass database, implies that aboveground biomass per hectare is proportional to forest mean height [biomass in Mg/ha = 10.63 (height in m)] in closed-canopy forests in the study regions, indicating that forest height can be a proxy of regional biomass C stocks. The narrow range of C stocks is likely a result of similar forest height across the northern regions. The lower biomass C stock obtained in this study strongly suggests that the role of the northern forests in the global carbon cycle needs to be re-evaluated. Our findings also suggest that regional estimates of biomass could be readily made from the use of satellite methods such as lidar that can measure forest canopy height over large regions

    Transcriptional and Functional Analysis of the Effects of Magnolol: Inhibition of Autolysis and Biofilms in Staphylococcus aureus

    Get PDF
    BACKGROUND: The targeting of Staphylococcus aureus biofilm structures are now gaining interest as an alternative strategy for developing new types of antimicrobial agents. Magnolol (MOL) shows inhibitory activity against S. aureus biofilms and Triton X-100-induced autolysis in vitro, although there are no data regarding the molecular mechanisms of MOL action in bacteria. METHODOLOGY/PRINCIPAL FINDINGS: The molecular basis of the markedly reduced autolytic phenotype and biofilm inhibition triggered by MOL were explored using transcriptomic analysis, and the transcription of important genes were verified by real-time RT-PCR. The inhibition of autolysis by MOL was evaluated using quantitative bacteriolytic assays and zymographic analysis, and antibiofilm activity assays and confocal laser scanning microscopy were used to elucidate the inhibition of biofilm formation caused by MOL in 20 clinical isolates or standard strains. The reduction in cidA, atl, sle1, and lytN transcript levels following MOL treatment was consistent with the induced expression of their autolytic repressors lrgA, lrgB, arlR, and sarA. MOL generally inhibited or reversed the expression of most of the genes involved in biofilm production. The growth of S. aureus strain ATCC 25923 in the presence of MOL dose-dependently led to decreases in Triton X-100-induced autolysis, extracellular murein hydrolase activity, and the amount of extracellular DNA (eDNA). MOL may impede biofilm formation by reducing the expression of cidA, a murein hydrolase regulator, to inhibit autolysis and eDNA release, or MOL may directly repress biofilm formation. CONCLUSIONS/SIGNIFICANCE: MOL shows in vitro antimicrobial activity against clinical and standard S. aureus strains grown in planktonic and biofilm cultures, suggesting that the structure of MOL may potentially be used as a basis for the development of drugs targeting biofilms

    Volcanic Age and Geochemistry of the Permian Linxi Formation in Northeast China: Implications for the Tectonic Evolution of the Paleo-Asian Ocean

    Get PDF
    The tectonic evolution of the Paleo-Asian Ocean (PAO) has been well studied, including its gradual narrowing and closure by subduction. However, aspects of the tectonic evolution of the oceanic domain remain unclear, including the exact timing and nature of the closure. The Central Asian Orogenic Belt (CAOB) was formed by the closure of the PAO and, therefore, contains information about the tectonic evolution of the oceanic domain. Here, we report a study of the petrology, geochronology, and geochemistry of the Taohaiyingzi section of the Permian Linxi Formation in Alukhorqin Banner (Northeast China) in the central part of the CAOB. A newly discovered andesitic tuff from the lower part of the Linxi Formation yields a weighted mean 206Pb/238U age of 262.2 ± 1.1 Ma (n = 87), indicating that the lower part of the Linxi Formation of the Taohaiyingzi section was deposited during the late Guadalupian. Provenance weathering indicators show that the sedimentary rocks of the Linxi Formation are of low maturity. Element geochemical characteristics indicate that the Linxi Formation clastic rocks were derived from eroded magmatic rocks that formed in a continental arc setting and were deposited close to the arc in a continental arc basin environment. The active margin setting was generated by the subduction of the paleo-Asian oceanic plate beneath the Xilinhot–Songliao block. The inferred palaeosalinity of the sedimentary environment changed gradually from brackish to fresh water, suggesting the end of oceanic plate subduction during the late Guadalupian, and the closure of the PAO during or after the Lopingian

    Draft genome sequence of the Tibetan antelope

    Get PDF
    The Tibetan antelope (Pantholops hodgsonii) is endemic to the extremely inhospitable high-altitude environment of the Qinghai-Tibetan Plateau, a region that has a low partial pressure of oxygen and high ultraviolet radiation. Here we generate a draft genome of this artiodactyl and use it to detect the potential genetic bases of highland adaptation. Compared with other plain-dwelling mammals, the genome of the Tibetan antelope shows signals of adaptive evolution and gene-family expansion in genes associated with energy metabolism and oxygen transmission. Both the highland American pika, and the Tibetan antelope have signals of positive selection for genes involved in DNA repair and the production of ATPase. Genes associated with hypoxia seem to have experienced convergent evolution. Thus, our study suggests that common genetic mechanisms might have been utilized to enable high-altitude adaptation

    A Comprehensive Model of Technological Learning: Empirical Research on Chinese Manufacturing Sector.

    No full text
    As the globalization accelerates its pace, made-in-China products have been travelling around the world for the last few decades. But in Chinese firms, their core technologies are still to a large part enslaved to foreign companies. Chinese government suggested Indigenous Innovation Capability as the essential aspect in the process of economic structure adjustment and economic growth mode’s fundamental shifts. Technological learning is hereby a key pathway for these firms to develop indigenous innovation capability under the circumstance of the manufacturing industrial structure upgrade. This paper examines the relationship between technological learning, technology capability and innovation performance. Data collected from the sample of 92 Chinese firms are analyzed, and a new model indicating these relationships is testified. The results highlight the importance of technological learning sources, contents and levels, while corresponding policy implications for companies are made in the end

    Grazing alters warming effects on leaf photosynthesis and respiration in Gentiana straminea, an alpine forb species

    No full text
    Vast grasslands on the Tibetan Plateau are almost all under livestock grazing. It is unclear, however, what is the role that the grazing will play in carbon cycle of the grassland under future climate warming. We found in our previous study that experimental warming can shift the optimum temperature of saturated photosynthetic rate into higher temperature in alpine plants. In this study, we proposed and tested the hypothesis that livestock grazing would alter the warming effect on photosynthetic and respiration through changing physical environments of grassland plants. Experimental warming was carried by using an infrared heating system to increase the air temperature by 1.2 and 1.7C during the day and night, respectively. The warming and ambient temperature treatments were crossed over to the two grazing treatments, grazing and un-grazed treatments, respectively. To assess the effects of grazing and warming, we examined photosynthesis, dark respiration, maximum rates of the photosynthetic electron transport (J(max)), RuBP carboxylation (V-cmax) and temperature sensitivity of respiration Q(10) in Gentiana straminea, an alpine species widely distributed on the Tibetan grassland. Leaf morphological and chemical properties were also examined to understand the physiological responses. 1) Light-saturated photosynthetic rate (A(max)) of G. straminea showed similar temperature optimum at around 16C in plants from all experimental conditions. Experimental warming increased A(max) at all measuring temperatures from 10 to 25C, but the positive effect of the warming occurred only in plants grown under the un-grazed conditions. Under the same measuring temperature, A(max) was significantly higher in plants from the grazed than the un-grazed condition. 2) There was significant crossing effect of warming and grazing on the temperature sensitivity (Q(10)) of leaf dark respiration. Under the un-grazed condition, plants from the warming treatment showed lower respiration rate but similar Q(10) in comparison with plants from the ambient temperature treatment. However, under the grazed condition Q(10) was significantly lower in plants from the warming than the ambient treatment. 3) The results indicate that livestock grazing can alter the warming effects on leaf photosynthesis and temperature sensitivity of leaf dark respiration through changing physical environment of the grassland plants. The study suggests for the first time that grazing effects should be taken into account in predicting global warming effects on photosynthesis and respiration of plants in those grasslands with livestock grazing
    • …
    corecore