104 research outputs found

    Mixed Far-Field and Near-Field Source Localization Algorithm via Sparse Subarrays

    Get PDF
    Based on a dual-size shift invariance sparse linear array, this paper presents a novel algorithm for the localization of mixed far-field and near-field sources. First, by constructing a cumulant matrix with only direction-of-arrival (DOA) information, the proposed algorithm decouples the DOA estimation from the range estimation. The cumulant-domain quarter-wavelength invariance yields unambiguous estimates of DOAs, which are then used as coarse references to disambiguate the phase ambiguities in fine estimates induced from the larger spatial invariance. Then, based on the estimated DOAs, another cumulant matrix is derived and decoupled to generate unambiguous and cyclically ambiguous estimates of range parameter. According to the coarse range estimation, the types of sources can be identified and the unambiguous fine range estimates of NF sources are obtained after disambiguation. Compared with some existing algorithms, the proposed algorithm enjoys extended array aperture and higher estimation accuracy. Simulation results are given to validate the performance of the proposed algorithm

    A 5'-proximal Stem-loop Structure of 5' Untranslated Region of Porcine Reproductive and Respiratory Syndrome Virus Genome Is Key for Virus Replication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been well documented that the 5' untranslated region (5' UTR) of many positive-stranded RNA viruses contain key <it>cis</it>-acting regulatory sequences, as well as high-order structural elements. Little is known for such regulatory elements controlling porcine arterivirus replication. We investigated the roles of a conserved stem-loop 2 (SL2) that resides in the 5'UTR of the genome of a type II porcine reproductive and respiratory syndrome virus (PRRSV).</p> <p>Results</p> <p>We provided genetic evidences demonstrating that 1) the SL2 in type II PRRSV 5' UTR, N-SL2, could be structurally and functionally substituted by its counterpart in type I PRRSV, E-SL2; 2) the functionality of N-SL2 was dependent upon the G-C rich stem structure, while the ternary-loop size was irrelevant to RNA synthesis; 3) serial deletions showed that the stem integrity of N-SL2 was crucial for subgenomic mRNA synthesis; and 4) when extensive base-pairs in the stem region was deleted, an alternative N-SL2-like structure with different sequence was utilized for virus replication.</p> <p>Conclusion</p> <p>Taken together, we concluded that the phylogenetically conserved SL2 in the 5' UTR was crucial for PRRSV virus replication, subgenomic mRNA synthesis in particular.</p

    Inefficient DMN Suppression in Schizophrenia Patients with Impaired Cognitive Function but not Patients with Preserved Cognitive Function

    Get PDF
    Previous studies have observed reduced suppression of the default mode network (DMN) during cognitive tasks in schizophrenia, suggesting inefficient DMN suppression is critical for the cognitive deficits of schizophrenia. Cognitive function in schizophrenia patients, however, varies from relatively intact to severely impaired. This study, which compared the DMN suppression patterns between first-episode schizophrenia patients with (SZ-Imp) and without (SZ-Pre) impaired cognitive function, may provide further insight into the role of DMN dysfunction in cognitive deficits of schizophrenia. Independent component analysis (ICA) was applied to resting-state fMRI data to identify the DMN in each subject, and then general linear modeling based on the task-fMRI data was used to examine the different DMN activation patterns between groups. We observed that the SZ-Imp group, but not the SZ-Pre group, showed reduced suppression in the medial prefrontal cortex and posterior cingulated cortexPrevious studies have observed reduced suppression of the default mode network (DMN) when compared to the healthy controls (HC) group. Moreover, less DMN suppression was associated with poorer task performance in both HC and patient groups. Our findings provide the first direct evidence that disrupted DMN activity only exists in schizophrenia patients with impaired cognitive function, supporting the specific neuro-pathological role of inefficient DMN suppression in cognitive deficits of first-episode schizophrenia

    Improving Text Matching in E-Commerce Search with A Rationalizable, Intervenable and Fast Entity-Based Relevance Model

    Full text link
    Discovering the intended items of user queries from a massive repository of items is one of the main goals of an e-commerce search system. Relevance prediction is essential to the search system since it helps improve performance. When online serving a relevance model, the model is required to perform fast and accurate inference. Currently, the widely used models such as Bi-encoder and Cross-encoder have their limitations in accuracy or inference speed respectively. In this work, we propose a novel model called the Entity-Based Relevance Model (EBRM). We identify the entities contained in an item and decompose the QI (query-item) relevance problem into multiple QE (query-entity) relevance problems; we then aggregate their results to form the QI prediction using a soft logic formulation. The decomposition allows us to use a Cross-encoder QE relevance module for high accuracy as well as cache QE predictions for fast online inference. Utilizing soft logic makes the prediction procedure interpretable and intervenable. We also show that pretraining the QE module with auto-generated QE data from user logs can further improve the overall performance. The proposed method is evaluated on labeled data from e-commerce websites. Empirical results show that it achieves promising improvements with computation efficiency

    Grain engineering of Sb2S3 thin films to enable efficient planar solar cells with high open-circuit voltage

    Get PDF
    Sb2S3 is a promising environmentally friendly semiconductor for high performance solar cells. But, like many other polycrystalline materials, Sb2S3 is limited by nonradiative recombination and carrier scattering by grain boundaries (GBs). This work shows how the GB density in Sb2S3 films can be significantly reduced from 1068 ± 40 to 327 ± 23 nm µm−2 by incorporating an appropriate amount of Ce3+ into the precursor solution for Sb2S3 deposition. Through extensive characterization of structural, morphological, and optoelectronic properties, complemented with computations, it is revealed that a critical factor is the formation of an ultrathin Ce2S3 layer at the CdS/Sb2S3 interface, which can reduce the interfacial energy and increase the adhesion work between Sb2S3 and the substrate to encourage heterogeneous nucleation of Sb2S3, as well as promote lateral grain growth. Through reductions in nonradiative recombination at GBs and/or the CdS/Sb2S3 heterointerface, as well as improved charge-carrier transport properties at the heterojunction, this work achieves high performance Sb2S3 solar cells with a power conversion efficiency reaching 7.66%. An impressive open-circuit voltage (VOC) of 796 mV is achieved, which is the highest reported thus far for Sb2S3 solar cells. This work provides a strategy to simultaneously regulate the nucleation and growth of Sb2S3 absorber films for enhanced device performance

    Grain engineering of Sb2S3 thin films to enable efficient planar solar cells with high open-circuit voltage

    Get PDF
    Sb2S3 is a promising environmentally friendly semiconductor for high performance solar cells. But, like many other polycrystalline materials, Sb2S3 is limited by nonradiative recombination and carrier scattering by grain boundaries (GBs). This work shows how the GB density in Sb2S3 films can be significantly reduced from 1068 ± 40 to 327 ± 23 nm µm−2 by incorporating an appropriate amount of Ce3+ into the precursor solution for Sb2S3 deposition. Through extensive characterization of structural, morphological, and optoelectronic properties, complemented with computations, it is revealed that a critical factor is the formation of an ultrathin Ce2S3 layer at the CdS/Sb2S3 interface, which can reduce the interfacial energy and increase the adhesion work between Sb2S3 and the substrate to encourage heterogeneous nucleation of Sb2S3, as well as promote lateral grain growth. Through reductions in nonradiative recombination at GBs and/or the CdS/Sb2S3 heterointerface, as well as improved charge-carrier transport properties at the heterojunction, this work achieves high performance Sb2S3 solar cells with a power conversion efficiency reaching 7.66%. An impressive open-circuit voltage (VOC) of 796 mV is achieved, which is the highest reported thus far for Sb2S3 solar cells. This work provides a strategy to simultaneously regulate the nucleation and growth of Sb2S3 absorber films for enhanced device performance
    corecore