2,187 research outputs found

    An Analysis of Renewable Energy Usage by Mobile Data Network Operators

    Get PDF
    The exponential growth in mobile data traffic has resulted in massive energy usage and therefore has increased the carbon footprint of the Internet. Data network operators have taken significant initiatives to mitigate the negative impacts of carbon emissions (CE). Renewable Energy Sources (RES) have emerged as the most promising way to reduce carbon emissions. This article presents the role of renewable energy (RE) in minimizing the environmental impacts of mobile data communications for achieving a greener environment. In this article, an analysis of some selected mobile data network operators’ energy consumption (EC) has been presented. Based on the current statistics of different mobile network operators, the future energy values are estimated. These estimations of carbon emissions are based on the predicted data traffic in the coming years and the percentage consumption of energy from renewable sources by the network operators. The analysis presented in this article would be helpful to develop and implement energy policies that accelerate the process of increasing the renewable shares in total energy requirements. Incrementing the share of renewable energy in total energy requirements can be a way forward to reach Goal 7 of the United Nations Sustainable Development Goals (SDGs)

    Deconfinement Phase Transition in an Expanding Quark system in Relaxation Time Approximation

    Full text link
    We investigated the effects of nonequilibrium and collision terms on the deconfinement phase transition of an expanding quark system in Friedberg-Lee model in relaxation time approximation. By calculating the effective quark potential, the critical temperature of the phase transition is dominated by the mean field, while the collisions among quarks and mesons change the time structure of the phase transition significantly.Comment: 7 pages, 7 figure

    Representing Variability in Software Architecture: A Systematic Literature Review

    Get PDF
    Variability in software - intensive systems is the ability of a software artefact (e.g., a system, subsystem, or component) to be extended, customised or configured for deployment in a specific context. Software Architecture is a high - level description of a software - intensive system that abstracts the system implementation details allowing the architect to view the system as a whole. Although variability in software architecture is recognised as a challenge in multiple domains, there has been no formal consensus on how variability should be captured or represented. The objective of this research was to provide a snapshot of the state - of - the - art on representing variability in software architecture while assessing the nature of the different approaches. To achieve this objective, a Systematic Literature Review (SLR) was conducted covering literature produced from January 1991 until June 2016. Then, grounded theory was used to conduct the analysis and draw conclusions from data, mini mising threats to validity. In this paper , we report on the findings from the study

    The ALI Architecture Description Language

    Get PDF
    Architecture Description Languages (ADLs) have emerged over the past two decades as a means to abstract details of large-scale systems in order to enable better intellectual control over the complete systems. Recently, there has been an explosion in the number of ADLs created in the research community. However, industrial adoption of these ADLs has been rather limited. This has been attributed to various reasons, including the lack of support of some ADLs for: variability management, requirements traceability, architectural artefact reusability and multiple architectural views. To overcome these limitations, this paper is a report on ALI, an ADL that was designed to complement existing work by adding mechanisms to address the aforementioned limitations. The ALI design principles, concepts, notations and formal semantics are presented in this paper. The notation is illustrated using two distinct case studies, one from the information systems domain " an Asset Management System (AMS); and another from the embedded systems domain - a Wheel Brake System (WBS)

    Cancer-Associated Fibroblasts Suppress CD8<sup>+</sup> T-cell Infiltration and Confer Resistance to Immune-Checkpoint Blockade

    Get PDF
    \ua92022 The Authors. Immune-checkpoint blockade (ICB) promotes antitumor immune responses and can result in durable patient benefit. However, response rates in breast cancer patients remain modest, stimulating efforts to discover novel treatment options. Cancer-associated fibroblasts (CAF) represent a major component of the breast tumor microenvironment and have known immunosuppressive functions in addition to their well-established roles in directly promoting tumor growth and metastasis. Here we utilized paired syngeneic mouse mammary carcinoma models to show that CAF abundance is associated with insensitivity to combination aCTLA4 and aPD-L1 ICB. CAF-rich tumors exhibited an immunologically cold tumor microenvironment, with transcriptomic, flow cytometric, and quantitative histopathologic analyses demonstrating a relationship between CAF density and a CD8+ T-cell–excluded tumor phenotype. The CAF receptor Endo180 (Mrc2) is predominantly expressed on myofibroblastic CAFs, and its genetic deletion depleted a subset of aSMA-expressing CAFs and impaired tumor progression in vivo. The addition of wild-type, but not Endo180-deficient, CAFs in coimplantation studies restricted CD8+ T-cell intratumoral infiltration, and tumors in Endo180 knockout mice exhibited increased CD8+ T-cell infiltration and enhanced sensitivity to ICB compared with tumors in wild-type mice. Clinically, in a trial of melanoma patients, high MRC2 mRNA levels in tumors were associated with a poor response to aPD-1 therapy, highlighting the potential benefits of therapeutically targeting a specific CAF subpopulation in breast and other CAF-rich cancers to improve clinical responses to immunotherapy

    Study of the island morphology at the early stages of Fe/Mo(110) MBE growth

    Full text link
    We present theoretical study of morphology of Fe islands grown at Mo(110) surface in sub-monolayer MBE mode. We utilize atomistic SOS model with bond counting, and interactions of Fe adatom up to third nearest neighbors. We performed KMC simulations for different values of adatom interactions and varying temperatures. We have found that, while for the low temperature islands are fat fractals, for the temperature 500K islands have faceted rhombic-like shape. For the higher temperature, islands acquire a rounded shape. In order to evaluated qualitatively morphological changes, we measured averaged aspect ration of islands. We calculated dependence of the average aspect ratio on the temperature, and on the strength of interactions of an adatom with neighbors.Comment: 6 pages, 6 figures. Proceedings of 11-th Symposium on Surface Physics, Prague 200
    • …
    corecore