148 research outputs found

    An Empirical Study of Guarantee in Service E-Commerce

    Get PDF
    Service e-Commerce (SeC) is emerging as a booming form of e-commerce where various services are contracted, managed, sold, and even delivered via the Internet. However, the uncertainty of service quality due to information asymmetry has been a major challenge to the development of SeC. Some SeC platforms tried to promote service business by lowering buyer’s perceived risk through the service guarantee mechanism. However, the mechanism seems not very successful to lift the low participation rate. This study investigated the effects of service guarantee on service e-marketplace by examining the case of zhubajie.com, a well-known service e-marketplace in China. A total of 30,406 providers (including 406 service-guarantee and 30,000 non-service-guarantee providers) were collected and analyzed. The analyses found that there are different modes for low-reputation and high-reputation service providers to participate in the service guarantee. In addition, results also show that service guarantee only improves business performance for the service providers with high reputation. For low-reputation service providers, the service guarantee mechanism does not have significant effects. Implications and suggestions were made to guide future practice and research in similar contexts

    Dropout Prediction Uncertainty Estimation Using Neuron Activation Strength

    Full text link
    Dropout has been commonly used to quantify prediction uncertainty, i.e, the variations of model predictions on a given input example. However, using dropout in practice can be expensive as it requires running dropout inferences many times. In this paper, we study how to estimate dropout prediction uncertainty in a resource-efficient manner. We demonstrate that we can use neuron activation strengths to estimate dropout prediction uncertainty under different dropout settings and on a variety of tasks using three large datasets, MovieLens, Criteo, and EMNIST. Our approach provides an inference-once method to estimate dropout prediction uncertainty as a cheap auxiliary task. We also demonstrate that using activation features from a subset of the neural network layers can be sufficient to achieve uncertainty estimation performance almost comparable to that of using activation features from all layers, thus reducing resources even further for uncertainty estimation.Comment: 8 page

    Langasite Family Midinfrared Nonlinear Optical Oxide Materials: Structure, Property, and Applications

    Get PDF
    Midinfrared (IR) nonlinear optical (NLO) materials with high performance are vital in important technological applications in many civil and military fields. Very recently, langasite family compounds have attracted much attention due to their wide transparency to mid-IR region and ultrahigh laser damage threshold (LDT). In this brief review, three important compounds—LGS, LGN, and LGT—are investigated and analyzed based on available experimental data. The electrooptical (EO) Q-switch and mid-IR OPO applications are summarized in detail. Finally, promising search directions for new metal oxides that have good mid-IR NLO performances are discussed

    The Analysis of Key Factors Related to ADCs Structural Design

    Get PDF
    Antibody–drug conjugates (ADCs) have developed rapidly in recent decades. However, it is complicated to map out a perfect ADC that requires optimization of multiple parameters including antigens, antibodies, linkers, payloads, and the payload-linker linkage. The therapeutic targets of the ADCs are expected to express only on the surface of the corresponding target tumor cells. On the contrary, many antigens usually express on normal tissues to some extent, which could disturb the specificity of ADCs and limit their clinical application, not to mention the antibody is also difficult to choose. It requires to not only target and have affinity with the corresponding antigen, but it also needs to have a linkage site with the linker to load the payloads. In addition, the linker and payload are indispensable in the efficacy of ADCs. The linker is required to stabilize the ADC in the circulatory system and is brittle to release free payload while the antibody combines with antigen. Also, it is a premise that the dose of ADCs will not kill normal tissues and the released payloads are able to fulfill the killing potency in tumor cells at the same time. In this review, we mainly focus on the latest development of key factors affecting ADCs progress, including the selection of antibodies and antigens, the optimization of payload, the modification of linker, payload-linker linkage, and some other relevant parameters of ADCs

    Myeloid Cell Hypoxia-Inducible Factors Promote Resolution of Inflammation in Experimental Colitis

    Get PDF
    Colonic tissues in Inflammatory Bowel Disease (IBD) patients exhibit oxygen deprivation and activation of hypoxia-inducible factor 1α and 2α (HIF-1α and HIF-2α), which mediate cellular adaptation to hypoxic stress. Notably, macrophages and neutrophils accumulate preferentially in hypoxic regions of the inflamed colon, suggesting that myeloid cell functions in colitis are HIF-dependent. By depleting ARNT (the obligate heterodimeric binding partner for both HIFα subunits) in a murine model, we demonstrate here that myeloid HIF signaling promotes the resolution of acute colitis. Specifically, myeloid pan-HIF deficiency exacerbates infiltration of pro-inflammatory neutrophils and Ly6C+ monocytic cells into diseased tissue. Myeloid HIF ablation also hinders macrophage functional conversion to a protective, pro-resolving phenotype, and elevates gut serum amyloid A levels during the resolution phase of colitis. Therefore, myeloid cell HIF signaling is required for efficient resolution of inflammatory damage in colitis, implicating serum amyloid A in this process

    Role of HMGB1 in apoptosis-mediated sepsis lethality

    Get PDF
    Severe sepsis, a lethal syndrome after infection or injury, is the third leading cause of mortality in the United States. The pathogenesis of severe sepsis is characterized by organ damage and accumulation of apoptotic lymphocytes in the spleen, thymus, and other organs. To examine the potential causal relationships of apoptosis to organ damage, we administered Z-VAD-FMK, a broad-spectrum caspase inhibitor, to mice with sepsis. We found that Z-VAD-FMK–treated septic mice had decreased levels of high mobility group box 1 (HMGB1), a critical cytokine mediator of organ damage in severe sepsis, and suppressed apoptosis in the spleen and thymus. In vitro, apoptotic cells activate macrophages to release HMGB1. Monoclonal antibodies against HMGB1 conferred protection against organ damage but did not prevent the accumulation of apoptotic cells in the spleen. Thus, our data indicate that HMGB1 production is downstream of apoptosis on the final common pathway to organ damage in severe sepsis

    Influence of Surface Crack Propagation on Ring-Shell Structure

    No full text
    In this paper, the surface cracks of deep-sea ring-shell structures are studied. In this paper, the geometric and physical parameters of 1000m underwater titanium alloy ring shell structure were analyzed. Firstly, the mathematical model of its relevant contour curve was obtained by combining with the parameter equation. Based on the mathematical model, the finite element model was established and the force analysis under static equilibrium condition was carried out. Secondly, the stress maximum point was solved by finite element analysis, and the initial crack was added at the stress maximum point. The stress intensity factor method was used to analyze the stress intensity factor and crack propagation. Finally, according to the physical parameter load, stress ratio, morphology coefficient and different Angle analysis, the influence factors that interfere with crack growth and the dynamic trend of crack morphology were evaluated. Aiming at the study of dynamic performance of cracked ring-shell structure, the crack characteristic curves under different complex working conditions were analyzed to deepen the research in related fields and provide some scientific reference for the study of related ring-shell structure

    Facile Preparation of Water-Dispersible Graphene Sheets Stabilized by Carboxylated Oligoanilines and Their Anticorrosion Coatings

    No full text
    Dispersion of graphene in solvents is of crucial importance toward its practical applications. In this study, using a water-soluble carboxylated aniline trimer derivative (CAT(-)) as a stabilizer, the commercial graphene can be stably dispersed in water at high concentration (>1 mg/mL) via strong pi-pi interaction that was proved by Raman and UV-vis spectra. Moreover, the CAT-functionalized graphene sheets (G-CAT(-) hybrid) exhibited high conductivity (similar to 1.5 S/cm), good electroactivity and improved electrochemical stability. The addition of well-dispersed graphene into waterborne epoxy system (G-CAT(-)/epoxy) remarkably improved corrosion protection compared with pure waterborne epoxy coating, based on a series of electrochemical measurements performed under 3.5% NaCl solution. This significantly enhanced anticorrosion performance is mainly due to the improved water barrier properties derived from highly dispersed graphene nanosheets in the epoxy coating

    Anticorrosive oligoaniline-containing electroactive siliceous hybrid materials

    No full text
    In this work, a novel electroactive silsesquioxane precursor, N-(3-triethoxysilylpropylureido) aniline tetramer (TESPAT), was synthesized via one-step coupling reaction between phenyl-capped aniline tetramer (AT) and 3-(triethoxysilyl) propyl isocyanate (TESPIC) under mild conditions. The chemical structure and electroactivity of the resulting silsesquioxane precursor were investigated by FTIR, NMR, UV-vis spectra, and cyclic voltammetry. Subsequently, the sol-gel reactions of TESPAT with triethoxymethylsilane (TEMS) at various compositions were carried out to achieve new electroactive siliceous hybrid materials with good thermal stability. Furthermore, polarization curves and electrochemical impedance spectroscopic (EIS) measurements indicated that the obtained hybrid materials exhibit remarkably enhanced corrosion protection on Q235 electrodes as compared to pure silica coating. The significantly improved anticorrosion performance is attributed to the redox catalytic capabilities of the AT units in the hybrid materials

    Seismic Fortification Analysis of the Guoduo Gravity Dam in Tibet, China

    No full text
    The primary aim of this research was to analyze the seismic performance of the Guoduo gravity dam. A nonlinear FEM method was implemented to study the deformation, stress, and overall stability of dam under both static and dynamic loading conditions, including both normal and overloading conditions. A dam seismic failure risk control method is proposed based on the cracking mechanism induced by the dynamic load to ensure dam safety and stability. Numerical simulation revealed that (1) under normal static and dynamic loading the symmetry of the displacement distributions is good, showing that the dam abutments and riverbed foundation have good overall stiffness. The stress distribution is a safe one for operation under both normal water loading and seismic loading. (2) Attention should be paid to the reinforcement design of outlets of the diversion dam monoliths, and enhance the capability of sustaining that tensile stress of dam monoliths. (3) The shape of the dam profile has a significant effect on the dynamic response of the dam. (4) By employing the “overload safety factor method,” the overall seismic fortification is as follows: K1=1.5, K2= 2~3, and K3= 3~4
    • …
    corecore