4,229 research outputs found

    Masses of Scalar and Axial-Vector B Mesons Revisited

    Full text link
    The SU(3) quark model encounters a great challenge in describing even-parity mesons. Specifically, the qqΛ‰q\bar q quark model has difficulties in understanding the light scalar mesons below 1 GeV, scalar and axial-vector charmed mesons and 1+1^+ charmonium-like state X(3872)X(3872). A common wisdom for the resolution of these difficulties lies on the coupled channel effects which will distort the quark model calculations. In this work, we focus on the near mass degeneracy of scalar charmed mesons, Ds0βˆ—D_{s0}^* and D0βˆ—0D_0^{*0}, and its implications. Within the framework of heavy meson chiral perturbation theory, we show that near degeneracy can be qualitatively understood as a consequence of self-energy effects due to strong coupled channels. Quantitatively, the closeness of Ds0βˆ—D_{s0}^* and D0βˆ—0D_0^{*0} masses can be implemented by adjusting two relevant strong couplings and the renormalization scale appearing in the loop diagram. Then this in turn implies the mass similarity of Bs0βˆ—B_{s0}^* and B0βˆ—0B_0^{*0} mesons. The P0βˆ—P1β€²P_0^* P'_1 interaction with the Goldstone boson is crucial for understanding the phenomenon of near degeneracy. Based on heavy quark symmetry in conjunction with corrections from QCD and 1/mQ1/m_Q effects, we obtain the masses of B(s)0βˆ—B^*_{(s)0} and B(s)1β€²B'_{(s)1} mesons, for example, MBs0βˆ—=(5715Β±1) MeV+δΔSM_{B_{s0}^*}= (5715\pm1)\,{\rm MeV}+\delta\Delta_S, MBs1β€²=(5763Β±1) MeV+δΔSM_{B'_{s1}}=(5763\pm1)\,{\rm MeV}+\delta\Delta_S with δΔS\delta\Delta_S being 1/mQ1/m_Q corrections. We find that the predicted mass difference of 48 MeV between Bs1β€²B'_{s1} and Bs0βˆ—B_{s0}^* is larger than that of 20∼3020\sim 30 MeV inferred from the relativistic quark models, whereas the difference of 15 MeV between the central values of MBs1β€²M_{B'_{s1}} and MB1β€²M_{B'_1} is much smaller than the quark model expectation of 60βˆ’10060-100 MeV.Comment: 21 pages, 1 figure, to appear in Eur. Phys. J. (2017). arXiv admin note: text overlap with arXiv:1404.377

    Inducing Effect on the Percolation Transition in Complex Networks

    Full text link
    Percolation theory concerns the emergence of connected clusters that percolate through a networked system. Previous studies ignored the effect that a node outside the percolating cluster may actively induce its inside neighbours to exit the percolating cluster. Here we study this inducing effect on the classical site percolation and K-core percolation, showing that the inducing effect always causes a discontinuous percolation transition. We precisely predict the percolation threshold and core size for uncorrelated random networks with arbitrary degree distributions. For low-dimensional lattices the percolation threshold fluctuates considerably over realizations, yet we can still predict the core size once the percolation occurs. The core sizes of real-world networks can also be well predicted using degree distribution as the only input. Our work therefore provides a theoretical framework for quantitatively understanding discontinuous breakdown phenomena in various complex systems.Comment: Main text and appendices. Title has been change

    Dimensionless ratios: characteristics of quantum liquids and their phase transitions

    Get PDF
    Dimensionless ratios of physical properties can characterize low-temperature phases in a wide variety of materials. As such, the Wilson ratio (WR), the Kadowaki-Woods ratio and the Wiedemann\--Franz law capture essential features of Fermi liquids in metals, heavy fermions, etc. Here we prove that the phases of many-body interacting multi-component quantum liquids in one dimension (1D) can be described by WRs based on the compressibility, susceptibility and specific heat associated with each component. These WRs arise due to additivity rules within subsystems reminiscent of the rules for multi-resistor networks in series and parallel --- a novel and useful characteristic of multi-component Tomonaga-Luttinger liquids (TLL) independent of microscopic details of the systems. Using experimentally realised multi-species cold atomic gases as examples, we prove that the Wilson ratios uniquely identify phases of TLL, while providing universal scaling relations at the boundaries between phases. Their values within a phase are solely determined by the stiffnesses and sound velocities of subsystems and identify the internal degrees of freedom of said phase such as its spin-degeneracy. This finding can be directly applied to a wide range of 1D many-body systems and reveals deep physical insights into recent experimental measurements of the universal thermodynamics in ultracold atoms and spins.Comment: 12 pages (main paper), (6 figures

    The effect of Tai Chi intervention on balance in older males

    Get PDF
    AbstractPurposeThe purpose of the present study was to examine the effects of a 24-week Tai Chi exercise intervention on balance and other physical changes such as flexibility and reaction time (RT) among healthy older males.MethodsThirty-eight male subjects aged 55–65 years without prior Tai Chi experience were recruited from a local community in Shanghai, China. A 60-min Tai Chi exercise session was performed three times a week for 24 weeks. Changes in RT, sit-and-reach flexibility and balance (static balance with eyes open and closed respectively) were measured before and after the Tai Chi intervention.ResultsAfter the 24-week Tai Chi intervention, the choice RT (p < 0.05) decreased, and sit-and-reach flexibility improved (p < 0.01) over the pre-test (7.8Β±6.2 vs. 7.1Β±3.0cm). Sway length, area, X-axis deviation amplitude and Y-axis deviation amplitude performance decreased significantly after the intervention with a double-foot stance with eyes open (p < 0.05). Sway length, area and average sway speed showed a statistically significant decrease after the intervention with the double-foot stance with eyes closed. In the single-foot stance with eyes open condition, sway length and average sway speed showed a statistically significant decrease (p < 0.05).ConclusionThe 24-week Tai Chi exercise intervention had a positive influence on balance control in older males

    Multigrid Discretization and Iterative Algorithm for Mixed Variational Formulation of the Eigenvalue Problem of Electric Field

    Get PDF
    This paper discusses highly finite element algorithms for the eigenvalue problem of electric field. Combining the mixed finite element method with the Rayleigh quotient iteration method, a new multi-grid discretization scheme and an adaptive algorithm are proposed and applied to the eigenvalue problem of electric field. Theoretical analysis and numerical results show that the computational schemes established in the paper have high efficiency
    • …
    corecore