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Dimensionless ratios of physical properties can characterize low-temperature phases in a wide va-
riety of materials. As such, the Wilson ratio (WR), the Kadowaki-Woods ratio and the Wiedemann-
Franz law capture essential features of Fermi liquids in metals, heavy fermions, etc. Here we prove
that the phases of many-body interacting multi-component quantum liquids in one dimension (1D)
can be described by WRs based on the compressibility, susceptibility and specific heat associated
with each component. These WRs arise due to additivity rules within subsystems reminiscent of
the rules for multi-resistor networks in series and parallel — a novel and useful characteristic of
multi-component Tomonaga-Luttinger liquids (TLL) independent of microscopic details of the sys-
tems. Using experimentally realized multi-species cold atomic gases as examples, we prove that the
Wilson ratios uniquely identify phases of TLL, while providing universal scaling relations at the
boundaries between phases. Their values within a phase are solely determined by the stiffnesses
and sound velocities of subsystems and identify the internal degrees of freedom of said phase such
as its spin-degeneracy. This finding can be directly applied to a wide range of 1D many-body
systems and reveals deep physical insights into recent experimental measurements of the universal
thermodynamics in ultracold atoms and spins.

I. INTRODUCTION

One of the central challenges in condensed matter
physics is to understand how different phases of mat-
ter can arise and how these phases can be characterized.
Many phenomena such as, e.g., superconductivity, mag-
netism and quantum phase transitions in strongly cor-
related systems [1], Bose-Einstein condensation of dilute
gases [2] and of excitons in semiconductors, electronic
transport in low-dimensional systems and heavy-fermion
physics [3], are known to exist due to the collective nature
of the underlying many-body processes. Collective phe-
nomena are particularly strong in low-dimensional sys-
tems where the reduced dimensionality enhances the in-
teraction of elementary constituents [4–7]. In order to
characterize the various phases, dimensionless ratios such
as the celebrated Wiedemann-Franz (WF) law [8] or the
Kadowaki-Wood ratio [9, 10] are very useful. They usu-
ally involve ratios of measurable quantities which stem
from similar underlying processes.

The WF law is universal across a wide range of ma-
terials and temperature regimes because non-universal
contributions due to, e.g., density of states and effec-
tive mass often cancel out. Conversely, deviations from
the WF law can be used to characterize the emergence
of new physical processes [11]. Remarkably, recent new
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experiments [12] show that the WF law holds even at
quantum phase transitions. Similarly, the Wilson ratio
(WR) [13, 14],

RχW =
4

3

(
πkB

µBgLande

)2
χ

cV /T
, (1)

between the susceptibility χ and the specific heat cV di-
vided by the temperature T , measures the strength in
magnetic fluctuations versus thermal fluctuations [3, 15,
16]. Here kB is Boltzmann’s constant, µB is the Bohr
magneton and gLande is the Lande factor. This dimen-
sionless ratio has been observed in a wide variety of
Kondo systems [3, 14]. Recent studies of the WR for
magnetic states of a 1D spin ladder compound [17] and
the two-component attractive Fermi gas [18] show that
RχW allows a convenient identification of magnetic phases.
Dimensionless ratios therefore provide an elegant exper-
imental and theoretical approach to a qualitative and
quantitative characterization of the nature of complex
multi-component quantum liquids.

In Fig. 1, we show that the Wilson-like ratio

RκW =
π2k2

B

3

κ

cV /T
, (2)

relating particle fluctuations to energy fluctuations, is
even more successful in determining phases in quantum
liquids. Recent experiment [19] show that the compress-
ibility WR (2) determines the Luttinger parameter for
the phase of TLL in 1D Bose gases and characterizes the
quantum fluctuations at quantum criticality. The key ob-
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FIG. 1: Phase diagram for the attractive SU(2) Yang-Gaudin
model at T = 0.001ε2/kB given as 3D plot of the WR RκW
in the µ − H plane. The pair binding energy is denoted by
ε2 = 0.5 and the interaction strength g1D = −2. The expected
values of RκW = 1, 4 in the excess fermion phase (F) and the
pure pair phase (P) in strong coupling limit, respectively, are
indicated on the legend on the right. The mixed phase of
fermions and pairs is denoted as F+P.

servation underlying the predictive strength of both WRs
is that the phases are related to simple additivity rules of
the underlying elementary excitations. In this paper, we
shall prove that such additivity rules are in fact general
for multi-component quantum liquids in 1D — and we
expect that they also hold for multicomponent Fermi liq-
uids in higher dimensions [16]. We further show that both
WRs stem from these exact additivity rules, can quanti-
tatively identify quantum phases of Tomonaga-Luttinger
liquids (TLL) independent of microscopic details and ex-
hibit universal scaling behavior at the quantum transi-
tions between phases. Their values within a given phase
give information about the internal degrees of freedom
of a phase, e.g., its spin-degeneracy. Such information is
important, e.g., for the collective nature of multicompo-
nent interacting quantum liquids in cold atoms [20–23],
large-symmetry fermionic systems [24, 25], spin chains
[17, 26] and 1D Hubbard model [5].

II. THEORY

A. General considerations

In order to show the versatility of the WRs in iden-
tifying phases, we are interested in systems that have a
rich phase diagram. We therefore start by studying first
an attractive quantum liquid that supports a hierarchy
of bound states. The system shall consist of unbound
particles, pairs of particles, triples of particles and so
on until we have at most w-tuples. For convenience, we
shall denote a bound state formed from r particles as

a r-complex. Let Nr denote the number of r-complexes
which have formed. Then the total number of particles
is given as N = N1 + . . . + wNw and the density of a
r-complex is nr = Nr/L such that the total particle den-
sity is n =

∑w
r=1 rnr. The relative propensity of a phase

is governed by a set of external fields Hr, r = 1, . . . , w
with Hw = 0. Here the Hr are coupling to the (spin)
moment of each r-complex. Then we can write for the
Hamiltonian of the system

H = T + V −
w−1∑
r=1

HrNr − µN, (3)

where T and V are as of yet unspecified kinetic and many-
body interaction energies.

In order to compute the WRs (1) and (2), we need
to compute the susceptibility χ, the compressibility κ
and specific heat cV for the w-component system in the
Gibbs ensemble G(µ,H1, . . . ,Hw). In a single compnent
system, χ and κ can be straightforwardly computed as
∂M/∂H (with magnetization M) for constant particle
number (canonical) or ∂n/∂µ for constant external fields
(grand canonical). For a multi-component system, we
therefore define in complete analogy a chemical potential
µr for each of the r-complexes via

µr = µ+
1

r
Hr +

εr
r
, (4)

where εr denotes the binding energy of an r-complex.
Remarkably, the quantity µ2 has already been measured
in a recent experimental study of the equation of state for
2D ultracold fermions [23]. It gives a deep physical in-
sight into the crossover from Bose-Einstein condensate to
Bardeen-Cooper-Schrieffer superconductor. Indeed, the
choice (4) allows us to define a Fermi energy at T = 0
for each fluid of r-complexes in the same way that εF is
defined in the Landau’s Fermi liquid picture. We now
introduce a stiffness in grand canonical and canonical
ensembles, respectively, as

Dκ
r =

r

~π

(
∂µr
∂nr

)
H1,...,Hw−1

, Dχ
r,r′ =

r

~π

(
∂µr
∂nr′

)
n

(5)

for a r-complex fluid subject to µ and the field Hr′ . Also,
the sound velocity for r-complexes is defined as usual via

vr = dεr(k)
dk |kF , where εr(k) is the dispersion relation for

r-complexes and kF the Fermi momentum. With these
definitions, we can then prove in 1D that the individual
κr, χr and cV,r in terms of the Dκ

r , Dχ

r,r′
and vr are given

as

κr =
r2

π~
1

Dκ
r

, χr,r′ =
r2

π~
1

Dχ
r,r′

, cV,r =
πk2

BT

3~
1

vr
(6)

as shown in the Appendix. We note that similar relations
hold in Fermi liquids (FLs) [16]. Our strategy therefore
is to derive the densities nr, the chemical potentials µr
and the dispersions εr(k) for the r-complexes as functions
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of H1, . . . ,Hw and µ. We expect that the definitions (5)
and (6) are useful in general for interacting quantum liq-
uids. However, analytical or numerical access to these
quantities is not necessarily straightforward. Following a
series of recent papers [27], we prove here that integrable
1D multi-component systems allow the explicit construc-
tion of nr, µr and εr using the thermodynamic Bethe
Ansatz (TBA) [28–30]. Following earlier theoretical [16]
and recent experimental [19, 23] findings, we furthermore
speculate that similar relations also hold for FLs in higher
dimensions and expect that such effective chemical po-
tentials for multi-component systems can therefore serve
as convenient handles to describe multi-component quan-
tum liquids.

B. The w-component quantum liquid

Let us now consider a specific w-component Hamilto-
nian (3) that supports multi-component quantum liquids.
A convenient and experimentally relevant example is the
1D SU(w) Fermi gas with δ-function interaction confined
to length L [31, 32]. The system is described by the
Hamiltonian (3) with

T + V = − ~2

2m

N∑
i=1

∂2

∂x2
i

+ g1D

∑
1≤i<j≤N

δ(xi − xj), (7)

and with the chemical potential µ and the effective Zee-
man energy Ez =

∑w
r=1

1
2r(w−r)nrHr. There are w pos-

sible hyperfine states |1〉, |2〉, . . . , |w〉 that the fermions
can occupy. Experimentally, g1D (= −2~2/ma1D, with
a1D the effective scattering length in 1D [33]; from now
on, we choose our units such that ~2 = 2m = 1 un-
less we particularly use the units.) can be tuned from a
weak interaction to a strong coupling regime via Feshbach
resonances. This model provides an ideal experimen-
tal testing ground to probe few- and many-body physics
[34, 37, 38].

For the system described by (7), the relation (4) follows
naturally from the structure of the TBA equations [27]
(see Appendix A). We will use in addition general energy-
transfer relations for breaking a w-complex into smaller
r-complexes, i.e.

1

r
Hr = µr − µw +

1

w
εw −

1

r
εr (8)

with r = 1, 2, . . . , w− 1. Note that εr = 1
48r
(
r2 − 1

)
g2

1D
is the explicit binding energy for each r-complex in the
system (7). Using the energy and particle conservation
conditions, (8) and n =

∑w
r=1 rnr, respectively, we find

that κ and χr obey the additivity rules,

κ = κ1 + κ2 + · · ·+ κw, (9)

1

χr
=

1

χr,1
+

1

χr,2
+ · · ·+ 1

χr,w
. (10)

in the TLL phases (see Appendix B). Here the suscep-
tibility χr represents the responses of different bound

states to the change of the field Hr. Such additivity ap-
pears naturally for a non-interacting fluid. Determining
vr from the TBA, we similarly find that

cV = cV,1 + cV,2 + · · ·+ cV,w. (11)

Based on the rules given in (9), (10) and (11), we can
construct the WRs of the w-component SU(w) system to
be

RχW,r′ =

(
w∑
r=1

Dχ
r,r′

r2

)−1( w∑
r=1

1

vr

)−1

, (12)

RκW =

(
w∑
r=1

r2

Dκ
r

)(
w∑
r=1

1

vr

)−1

. (13)

These ratios are dimensionless and uniquely determined
by the sound velocities and stiffnesses. We note that the
form of the WRs in (12) and (13) is similar for a w-
component FL; all interaction effects have been included
into (8) via the choice of µr.

In the strong coupling regime, RκW for a pure r-complex
phase (RχW = 0 in pure phases [18]) can be given in the
form

Rκ,rW = rKr = r2

(
1− 2Br

1

|γ|
+B2

r

1

γ2

)
+O(γ−3),(14)

where γ = g1D/2n is the dimensionless interaction

strength, B1 = 0 and Br =
r−1∑
k=1

1/k with r = 2, . . . , w.

In the above equation, Kr is the phenomenological Lut-
tinger parameter which can be directly measured through
the Wilson ratio RχW. This provides an important way
to test the low energy Luttinger theory. For γ →∞, RκW
then displays plateaus at the integers 12, . . . , r2, . . . , w2.
Thus RκW provides a convenient quantitative phase char-
acteristic for quantum systems at finite T as well as at
T = 0, see Fig. 1 and below.

C. Scaling of the WRs

It is particularly interesting that the WRs identify non-
TLL behaviour and quantum criticality in the quantum
critical regime. In fact, the WRs show sudden enhance-
ment near a quantum phase transition due to a break-
down of the quantum liquid nature, i.e. the vanishing lin-
ear dispersion for 1D systems. For both WRs, we have
the scaling law

Rκ,χW = Fκ,χ
[

(η − ηc)
T

1
νz

]
+ λ0T

−βGκ,χ
[

(η − ηc)
T

1
νz

]
,(15)

where β = (d/z) + 1 − 2/(νz) with z = 2, ν = 1/2
and d = 1 for 1D systems is universal; Fκ,χ, Gκ,χ are
the scaling functions (see Appendix C). The second term
in (15) with β = −1/2 reflects a contribution from the
background at the temperatures above the energy gap
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FIG. 2: Scaling of RκW at phase boundaries (a) V-F and
(b) V-P with H/ε2 = 1.16 and 0.9, respectively (cp. Fig. 1).
The left panels in (a) and (b) show RκW vs. µ/ε2 for reduced
temperatures t = 0.003 (4), 0.002 (�) and 0.001 (◦). The
vertical dotted lines indicate µc/ε2. The dashed lines show
the calculated slopes Cr/t. The right panels show the scaled
RκW as in (15) with β = −1/2 vs. (µ − µc)/ε2t. The vertical
dotted lines are as in the left panel while the horizontal lines
indicate the strong interaction limit of RκW in the (a) F and
(b) P phases.

∆ ∼ |η − ηc|zv, with driving parameter η (e.g. µ or Hr).
These critical exponents agree with the experimental re-
sult for the thermal and magnetic properties of the 1D
spin chain at criticality [19, 26]. For a phase transition
from the vacuum to a TLL phase, λ0 = 0. Based on
(15), the slope of the temperature-rescaled RκW curves at

a critical point is given by
(
∂RκW
∂µ

)
µc

= Cr/T , see Ap-

pendix C.

The significance of the WRs can also be under-
stood from the quantum fluctuations of magnetization,
〈δM2〉 = `dkBTχ, and particle number, 〈δN2〉 =
`dkBTκ; `d denotes the observation volume in d-
dimensions. Therefore, microscopically, χ and κ measure
the strength of these fluctuations just as cV quantifies the
energy fluctuations; macroscopically, the temperature-
independent compressibility and the linear-temperature-
dependent specific heat remarkably preserve the nature
of quantum liquid at the renormalization fixed point, see
Eq. (6) like the Fermi liquid [15]. Consequently, RχW and
RκW characterise the competition between fluctuations of
different origin. A constant WR implies that the two
types of fluctuations are on an equal footing, regardless
of the microscopic details of the underlying many-body
system. On the other hand, the growth of the WRs in the
critical regime indicates the long-range character of the
quantum fluctuations at the quantum phase transitions.

III. APPLICATIONS

A. The Yang-Gaudin model.

In order to show the usefulness of the new ratios, we
start by considering the w = 2 1D spin-1/2 Fermi gas
with a δ-function interaction [35, 36]. This Yang-Gaudin
model has already provided an ideal experimental test-
ing ground [34, 37, 38] for few- and many-body physics
[27, 39, 40]. For RχW , the additivity rule of susceptibility
and its connection to the Dχ

r ’s following (12) have been
reported in [18]. For RκW , we now find from (13) that

RκW =

(
1

Dκ
1

+
4

Dκ
2

)
/

(
1

v1
+

1

v2

)
. (16)

Writing the explicit dependence on µ, H and g1D is pos-
sible, but tedious (we give explicit forms for Dκ

1,2 and
v1,2 in Appendix B). In Fig. 1 we show RκW in the µ–
H plane. RκW elegantly maps out the three finite tem-
perature TLL phases of 1-complexes, i.e. fully-polarized
fermions (F), 2-complexes, i.e. pairs (P), and the mixed
TLL of excess fermions and pairs (F+P). The empty vac-
uum phase (V) is also present in Fig. 1. In particular,
we note that for the pure phases F and P, RκW ≈ r2,
i.e. close to the strong coupling value rKr [41]. Hence
for the Yang-Gaudin model in Fig. 1 we see RκW = 1 in
phase F and 4 in phase P. In mixed phases, e.g. F+P,
such a constant plateau no longer exists. For RκW in the
critical regime, we find a rapid increase due to a strong
increase in thermal fluctuations. In Fig. 2 we show the
scaling behavior (15) for RκW close to the transition from
the vacuum phase into the F and the P phases. We find
C1 ≈ 1.2546 and C2 ≈ 2 × 5.0185, respectively. Eq.
(15) does not contain any free fitting parameter, so one
can use this scaling to determine the temperature of the
quantum liquid. The scaling law is also similar to the
scaling in the non-FL regime of heavy fermions [3, 42].

B. A w ≥ 3 quantum liquid.

An even richer phase diagram exists for the three-
component δ-function interacting Fermi gas with an at-
tractive interaction [31]. Its T = 0 phases are known
to consist of excess fermions (F), pairs (P), trions (T)
and mixtures thereof [43, 44]. Using the TBA equations,
we again numerically and analytically calculate the WRs
and determine their H1, H2 and T dependencies. In
Fig. 3 we show that in the pure phases F, P and T, we
have RκW = 1, 4, 9, respectively, and the phase bound-
aries are clearly marked by large increases in RκW near
the critical points. At T > 0, we see that the κ and
cV curves become progressively more rounded across the
phase transitions for T increases. The magnetic field as-
sociated with the position of the finite-height peaks varies
as a function of temperature. This can be used to define
a crossover temperature T ∗ for each such magnetic field
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FIG. 3: Upper panel: plot of RκW for the 1D three-component
attractive Fermi gas in the H1–H2 plane at temperature t =
0.001ε3/kB . The values of RκW = 1, 4, 9 in the pure phases
F, P and T, respectively, are indicated by the colors marked
on the color scale shown. The dashed lines follow the phase
boundaries as indicated. Lower panel: compressibility κ and
specific heat cV /T vs. external field H2/ε3 for a fixed choice
of polarization n1 = n2 indicated by the dash-dotted line in
the phase diagram (upper panel). At zero temperature, κ and
cV /T satisfy the additivity rules (9) and (11) as shown by the
solid lines while at finite T , they exhibit peaks as indicated
by the arrows for t = 0.003ε3/kB . Near the phase boundaries

both κ and cV /T diverge quickly as (H2 −Hc
2)−1/2.

corresponding to a peak. For T < T ∗, our analytical and
numerical results reconfirm the validity of the additiv-
ity rules (9)–(11), i.e. κ and χ remain independent of the
temperature and cV depends linearly on the temperature
in the TLL phase (cp. lower panel in Fig. 3). This nature
is also seen in Fermi liquids [14, 15]. The additivity na-
ture of the susceptibility is presented in Appendix B. The
significance of such additivity rules is the characteristic
of quantum liquids at the renormalization fixed point,
such as TLLs in integrable models and Fermi liquids in
metals. etc. For T > T ∗, RκW exhibits the critical scaling
behaviour (15) (see also Appendix C). Fig. 4 shows the
contour plot of RκW at low temperatures. The univer-
sal quantum critical behaviour (15) is characterized by
the exponents z = 2, ν = 1/2. For T < T ∗, the critical
exponents are z = ν = 1.

Moreover, using the TBA equations for the SU(w)
Fermi gases with an attractive interaction [45], we calcu-
late the susceptibility χr = ∂M/∂Hr in response to the
change of magnetic field Hr for the spin-gapped phases.
The other magnetic fields are fixed and the magnetization
is given by M =

∑w−1
r=1 nrr(w − r)/2. In dimensionless

units, the energies are rescaled by the interaction energy
εb = 1

2~
2c2/(2m), i.e. the temperature t = T/εb, the

pressures p̃r = pr/(|c|εb), the susceptibility χ̃ = |c|ξ/2,
see the Appendix B. We obtain explicitly a general ex-
pression of the susceptibility χr for the gapped phase in
which a small number of the r−complexes are created

T=0.007

T=0.005

T=0.003

T=0.001

T=0.0002

T=0.00005

T=0

T F+P+T F+P

T F+P+T

F+P


WR

32 /H

32 /H

3/T


WR

1

4

9

FIG. 4: Mapping out quantum criticality with RκW in the T–
H2 plane. The H2 values have been chosen to follow the fixed
polarization n1 = n2 as indicated by the dash-dotted white
line in Fig. 3. The white dashed lines denote the crossover
temperatures T ∗ beyond which the TLL phases break down.
The inset shows individual temperature curves of RκW vs. H2

for representative temperatures. The bold solid line shows
the result corresponding to (13) while the thin dashed lines
show the numerical results obtained from the TBA equations
(Appendix A).

due to the change of Hr for t� 1,

χ̃r ≈
1

4
√

2π

1√
t

√
r(w − r)re−

∆r
t , (17)

where the gap is given by

∆r ≈ −rµ̃r +

w∑
m=1

min(r,m)∑
q = 1

2q 6= r +m

4p̃m

m(r +m− 2q)
, (18)

see the Appendix C. For example, from the upper panel
phase diagram in Fig. 3, we observe that in the gapped
phase of T, χ̃1 with ∆1 = −µ̃1 +2p̃3/3 and χ̃2 with ∆2 =
−2µ̃2 + 16p̃3/9 show a dilute magnon behaviour related
to the phase transitions from the phase T into the mixed
phase F+T and into the the mixed P+T, respectively.
They decay exponentially as the temperature approaches
zero. By properly choosingH1 andH2, we also can have a
phase transition from the gapped phase T into the mixed
phase F+P+T.

C. Critical theory for the SU(w) repulsive Fermi
gases

The existence of internal degrees of freedom signifi-
cantly changes the quantum magnetism and the dynam-
ics of the system compared to the spinless Bose gas.
It is well established that the critical behaviour of the
spin SU(w) chain can be described by the Wess-Zumino-
Witten σ model of level ` = 1 with the Kac-Moody cen-
tral charge Cs = `(w2−1)/(`+w) [49]. The w-component
repulsive Fermi gases display a U(1)⊗ SU(w) symmetry
characterized by one charge degree of freedom and w− 1
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spin rapidities. The low-energy physics of the system
is described by the spin-charge separated conformal field
theories of an effective Tomonaga-Luttinger liquid and an
antiferromagnetic SU(w) Heisenberg spin chain [5, 50].
By using the TBA equations given in [45] with H → 0
we find that the pressure of the 1D repulsive Fermi gases
is given by

p = pT=0 +
w(w2 − 1)H2

24πvs
+
πT 2

6

[ 1

vc
+
Cs
vs

]
, (19)

where pT=0 is the pressure at T = 0 and vs,c are the
pseudo Fermi velocities in the spin and charge sectors,
respectively. This result is consistent with the critical
field theory for the SU(w) spin chains [49]. In the zero
magnetic field limit, the spin and charge velocities for the
Fermi gas with strong repulsion are, respectively,

vs =
2n2π3a1D

3w
(1 + 3a1DZ n) ,

vc = 2nπ (1 + 2a1DZ n) , (20)

where Z = − 1
w

[
ψ( 1

w ) + C
]

and C the Euler γ-constant,
ψ(x) the Euler ψ-function. The susceptibility is then
given by Luttinger-liquid relation

χvs =
1

12π
w(w2 − 1) (21)

in the limit H → 0. Indeed the sound velocity vc (20)
of the Fermi gas in the large-w limit coincides with that
for the spinless Bose gas, whereas vs vanishes quickly as
w grows. This gives a reason why the quantum liquid
of multi-component fermions reduces to the liquid of a
spinless Bose gas in this limit [34]. In this sense, RχW
captures this unique large-spin charge separation mecha-
nism in the w-component repulsive Fermi gas. Its explicit
expressions is

RχW =
w(w2 − 1)vc

3 [(w − 1)vc + vs]
, (22)

displaying plateaus of height w(w+1)/3 for either strong
repulsion or in the large-w limit, hence capturing the spin
degeneracy. For example, RχW = 2 and 4 for the two-
and three-component Fermi gases with strong repulsion,
respectively.

IV. EXPERIMENTAL REALIZATIONS

Both WRs RχW and RκW are readily accessible by ex-
periments. For example, the 1D SU(w) δ-function in-
teracting Fermi gas of 173Yb has been realized experi-
mentally [34]. It was shown that in the large-w limit
the ground state of the gas with a repulsive interac-
tion exhibits properties of a bosonic spinless liquid. In
the context of ultracold atoms, it is highly desirable to
measure the quantum criticality and the TLL in such

4

1

FIG. 5: Upper panel: Contour plot of the WR RκW (2) for
the Yang-Gaudin model in a harmonic trap with fixed par-
ticle number N and three different polarizations P = n1/n
at the temperature T = 0.001ε2/kB . The WR evolves thin
round peaks near the phase boundaries, whereas the values of
the WR (16) quantify different quantum phases of the TLLs.
The WR peaks are in good agreement with the experimen-
tal phase boundaries (red and yellow dots) observed in [37].
Lower panel: the red-dashed and yellow-solid lines show the
WR RκW in the trapped gas with the polarizations P = 0.027
and P = 0.341, respectively. They indicate segments of the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase in the centre
accompanied by the wings of the P and the F states, respec-
tively. The highest RκW plateau approaches 4 suggesting a
quasi-1D superfluid nature, whereas the lowest plateau shows
the free fermion nature with RκW = 1. For a critical polariza-
tion Pc = 0.176, the green-dashed line shows that the trapped
gas consists solely of the FFLO-like state.

Fermi gases with rich spin and charge degrees of free-
dom. In this scenario, the Yang-Gaudin model is an
ideal model to conceive critical phenomena induced from
spin and charge interaction effects. This model was
recently studied via an ultracold atomic gas in a har-
monic trap, such as the two-component ultracold 6Li
atoms of Ref. [37]. Due to the harmonic confinement,
the chemical potential in the equation of state should
be replaced by µ (x) = µ (0) −mω2x2/2 (within the lo-
cal density approximation). Here x denotes the posi-
tion along the 1D trap. Changing x is then equivalent
to changing µ and different phases are located at differ-
ent spatial positions along the trap. Using a rescaled
coordinate y = xa1D/(2a

2) with axial characteristic os-

cillation length a =
√
~/mω, the density profile of the

trapped gas can be determined from the dimensionless
quantities Na2

1D/a
2 = 2a1D

∫∞
−∞ dy n(y) and polarization
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Ma2
1D/a

2 = 2a1D

∫∞
−∞ dymz(y). The compressibility can

be extracted via κ = ∂n/∂µ = −∂n/∂x/(xmω2) [46, 47],
while the density n(x) is read off from experimental pro-
files along x. The specific heat can be measured through
the sound velocities, while the density waves of pairs and
unpaired fermions can be experimentally created by a
density depletion or pulse with a far-detuned laser beam
[48]. In the upper panel of the Fig. 5, we observe that
RκW at a very low temperature naturally maps out the
phase diagram of the system, showing a good agreement
with the experimental phase boundaries [37]. In the lower
panel of Fig. 5, we show the behaviour for RκW , exhibit-
ing the plateau structure as the system passes through
different phases upon changing x.

V. CONCLUSIONS

In summary, we have shown that the additivity rules of
physical properties reveal an important characteristic of
the TLL and provide the physical origin of the dimension-
less WRs. Such dimensionless ratios can be used to iden-
tify full TLL phases and capture the essence of phenom-
ena ranging from quantum criticality to spin and charge
separation in a wide variety of 1D many-body systems.
We have presented some universal relations, such as the
WRs (12) and (13), the Luttinger parameter (14), the di-
mensionless scaling function of the WR (15), the suscep-
tibility for the gapped systems (17) and the WR of SU(w)
repulsive Fermi gas related to the level-1 Wess-Zumino-
Novikov-Witten conformal theory (22). We also show ex-
cellent agreement between the phase diagram predicted
by the WRs and the experimentally determined one for

the Yang-Gaudin model [37]. Our results therefore suc-
cessfully demonstrate how to predict universal laws for
experimentally realizable quantum liquids in Bose and
Fermi degenerate gases, Bose-Fermi mixtures, 1D Hub-
bard model, strongly correlated electronic systems, spin
compounds near to and far from quantum critical points
on an equal footing.

Acknowledgments

We thank T. Guttmann, J. Ho, R. Hulet, G. Shlyap-
nikov, Z.-C. Yan, S.-Z. Zhang, Q. Zhou and H. Zhai for
helpful discussions. This work has been supported by the
National Basic Research Program of China under Grant
No. 2012CB922101 and No. 2011CB922200, by the key
NNSFC grant No. 11534014 and by the NNSFC under
grant numbers 11374331 and 11304357. XWG thanks the
Department of Physics at Rice University, University of
Washington and ITAMP at Harvard University for kind
hospitality. RAR gratefully acknowledges the hospitality
at WIPM, CAS Wuhan and funding via a CAS Senior
Visiting Professorship.

APPENDIX A: THERMODYNAMIC BETHE
ANSATZ FOR THE SU(w) FERMI GAS

The Gibbs free energy of the SU(w) attractive gas is

G(µ,H1, . . . ,Hw) =

w∑
r=1

rT

2π

∫
dk ln

[
1 + e−εr(k)/T

]
(A1)

with dispersions εr(k) defined in the TBA via

εr(k) = rk2 − rµ−Hr − εr +

r−1∑
p=1

{
w∑
q=p

aq+r−2p ∗ T ln
[
1 + e−εq(k)/T

]
+

w∑
q=r+1

aq−r ∗ T ln
[
1 + e−εq(k)/T

]}

−
∞∑
q=1

aq ∗ T ln
[
1 + e−ηr,q/T

]
, (A2)

ηr,l(k) = l · (2Hr −Hr−1 −Hr+1) + al ∗ T ln
[
1 + e−εr(k)/T

]
+

∞∑
q=1

Ulq ∗ T ln
[
1 + e−ηr,q(k)/T

]
−
∑
q=1

Slq ∗ T ln
[
1 + e−ηr−1,q(k)/T

]
−
∞∑
q=1

Slq ∗ T ln
[
1 + e−ηr+1,q(k)/T

]
, (A3)

with

Ulj(x) =

{
a|l−j|(x) + 2a|l−j|+2(x) + . . .+ 2al+j−2(x) + al+j(x), l 6= j
2a2(x) + 2a4(x) + . . .+ 2a2l−2(x) + a2l(x), l = j,

Slj(x) =

{
a|l−j|+1(x) + 2a|l−j|+3(x) + . . .+ 2al+j−3(x) + al+j−1(x), l 6= j
a1(x) + a3(x) + . . .+ a2l−3(x) + a2l−1(x), l = j,

while ∗ denotes the convolution (a ∗ b)(x) =
∫
a(x − y)b(y)dy and the ηr,l(k) represent the spin string param-
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eters; furthermore an(x) = n|c|/2π[(nc/2)2 + x2]. Here
c = mg1D/~2 = −2/a1D. The numerical results used
in the figures were obtained by solving the above TBA
equations.

APPENDIX B: ADDITIVITY RULES FOR SU(w)
FERMI GASES

From (4), we find that constant fields in the grand
canonical ensemble, i.e. dH1 = dH2 = . . . = dHw−1 = 0,
imply dµr = dµ for r = 1, . . . , w. Consequently, we have

κ =
∂n

∂µ
=
∂
∑w
r=1 rnr
∂µ

=

w∑
r−1

r∂nr
∂µr

=

w∑
r=1

κr, (B1)

with κr as given by (5) and (6). Note that this result is
general and does not use special properties of the SU(w)
gases.

The additivity rules for the spin susceptibility are very
intriguing. For our convenience in analysis of the SU(w)
case, we prefer to keep the ratios among the densities of
the charged bound states as n1 : n2 : . . . : nw−1 =
λ1 : λ2 : . . . : λw−1, then we can parameterize the
n1, n2, . . . , nw as

nr =
λr
λ
n̂, (r = 1, 2, . . . , w − 1), nw =

1

w
(n− n̂) (B2)

where λ = λ1 + 2λ2 + ... + (w − 1)λw−1. In order to
compute the additivity rules for χ−1

r = ∂Hr/∂M , with

magnetization M =
∑w−1
r=1 r(w − r)nr/2, we start with

the Legendre transformation from Gibbs free energy to
ground state energy: E = G + µn +

∑w−1
r=1 nrHr, and

in the ensemble {n1, · · · , nw−1, n} the field Hr can be
obtained:

Hr =
∂E

∂nr

∣∣∣
n1,··· ,nr−1,nr+1,··· ,nw−1,n

=
∂E

∂nr

∣∣∣
n1,··· ,nr−1,nr+1,··· ,nw

− r

w

∂E

∂nr

∣∣∣
n1,··· ,nw−1

(B3)

where E =
∑w
r=1Er denotes the energy of the multi-

component ground state [27] and we have ∂E/∂nr = rµr
for consistency with (4). We emphasize that the additiv-
ity of E is a fundamental property of a TLL, implied by
the linearity of the dispersions [27].

Following the relation (B2), we can define differential
forms of any thermodynamic function f = f(n1, · · · , nw)
:

d f =

w−1∑
r=1

∂f

∂nr
· λr
λ

∆n̂− ∂f

∂nw

1

w
∆n̂, (B4)

dM =

w−1∑
r=1

1

2
r(w − r)λr

λ
·∆n̂. (B5)

We denote the operator Dr = ∂
∂nr
− r

w ·
∂

∂nw
with

r = 1, 2, . . . , w − 1. Then the field Hr can be expressed

explicitly: Hr = DrE and the susceptibility in response
to the Hr can be expressed as

1

χr
=

dHr

dM
=

∑w−1
r=1 λrDr∑w−1

r=1
1
2r(w − r)λr

· DrE.

We note that the last term in the Eq. (B3) linearly de-
pends on the density nr and nw. Therefore it can be
safely dropped off in the calculation of the susceptibili-
ties because of the second order of derivatives. In terms
of the ground state energies E =

∑w
`=1E` for the indi-

vidual charge bound states We define the stiffness as

1

χr`
=

~π
r2
Dχ
r,l =

∑w−1
r=1 λrDr∑w−1

r=1
1
2r(w − r)λr

· DrE`, (B6)

where r = 1, 2, . . . , w − 1 and ` = 1, 2, . . . , w. Conse-
quently, we have the susceptibility (10) in responses to
the external field Hr.

In fact, Zeeman spliting can be characterized by the
Zeeman energy levels εrZ or by the effective magnetic
fields Hr with r = 1, 2, . . . , w. Here Hw = 0. Both
sets of parameters are related via the relation

w∑
r=1

εrZn
r = −

w∑
r=1

Hr(n
r − nr+1). (B7)

A consistent solution of this equation gives the relations
between Hr and Zeeman energy levels [45]. If we denote
the difference between the energy levels of fermions in
the states |m + 1〉 and |m〉 as ∆m+1,m = εm+1

Z − εmZ ,

then the total susceptibility χ = dM
d∆total

with ∆total =∑w−1
r=1 ∆r+1,r is given by

χ−1 =
d
∑w−1
r=1 ∆r+1,r

dM
=

d (H1 +Hw−1)

dM

=
1

χ1
+

1

χw−1
. (B8)

Using the numerical calculation for the Gibbs free energy
G(µ,H1, H2) from Eq. (A1), we observe that the suscep-
tibilities χ1 and χ2 satisfy the relation (10) in the TLL
phase of trions, pairs and single atoms, see Fig. A1.

Using the TBA equations [28, 45], one can easily prove
that the specific heat can be written in terms of sound
velocities, i.e.

cV =
π2k2

BT

3

w∑
r

1

~πvr
. (B9)

APPENDIX C: SCALING FORMS ON
BOUNDARIES

We focues on the low temperature behaviour for w = 3
to derive the analytical results for the thermodynamics,



9

FIG. A1: Susceptibilities in response to H1 and H2 for the three-
component Fermi gas with a fixed ratio of n1/n2 = 1 at finite
temperatures. Under this setting the H1 and H2 have a one-to-
one mapping along the line of n1/n2 = 1 with a fixed total den-
sity. These two figures show that the susceptibility is temperature-
independent for the TLL phase of F+P+T indicated by the long
dashed line in Fig. 3 in the main text. The deviation from the solid
lines in the two figures show a breakdown of the TLL. Here T, B
and F stand for trions, pairs and excess fermions, respectively. The
solid lines confirm the additivity rule Eq. (10) in the main text.

and finally we derive formula of general SU(w) gases of
the cricarity about susceptibilities.In the strong interac-
tion limit, we can solve these TBA equations analytically
at low temperatures T � ε3/kB by simplifying

εr(k) ≈ r k2 −Ar, r = 1, 2, 3, (C1)

with

A1 = µ+H1 −
2

|c|
p2 −

2

3|c|
p3 +

1

4|c|3
Y2, 52

+
1

9|c|3
Y3, 52

+ Te−(2H1−H2)/T e−J1/T I0(J1/T )

A2 = 2µ+
1

2
c2 +H2 −

4

|c|
p1 −

1

|c|
p2 −

16

9|c|
p3

+
8

|c|3
Y1, 52

+
1

4|c|3
Y2, 52

+
224

243|c|3
Y3, 52

+Te−(2H2−H1)/T e−J2/T I0(J2/T ),

A3 = 3µ+ 2c2 − 2

|c|
p1 −

8

3|c|
p2 −

1

|c|
p3

+
1

2|c|3
Y1, 52

+
28

27|c|3
Y2, 52

+
1

16|c|3
Y3, 52

(C2)

with Yr,a = −
√

r
4πT

aLia
(
−eAr/T

)
. Here the effec-

tive spin coupling constant is Jr = 2pr/r|c| with c =
mg1D/~2. The polylogarithm function is defined as

Lin(x) =
∑∞
k=1

xk

kn and I0(x) =
∑∞
k=0

1
(k!)2 (x/2)

2k
. The

effective pressures pr, with r = 1, 2, 3, of excess fermions,
pairs and trions, respectively, can be expressed as

p1 = Y1, 32

[
1 +

4

|c|3
Y2, 32

+
1

3|c|3
Y3, 32

]
,

p2 = Y2, 32

[
1 +

4

|c|3
Y1, 32

+
1

4|c|3
Y2, 32

+
112

81|c|3
Y3, 32

]
,

p3 = Y2, 32

[
1 +

1

3|c|3
Y1, 32

+
112

81|c|3
Y2, 32

+
1

8|c|3
Y3, 32

]
.

1. Vacuum – Pair

The above simplified TBA equations (C1) can be used
to derive universal low temper properties of the SU(2)
and SU(3) Fermi gases. In the following, we derive the
scaling forms of the Wilson ratios in the critical regions
for the two-component Fermi gas. Here we will use the
dimensionless units as being explained in the main text.
The phase boundary for the phase transition from V to P
phase are µ̃c = − 1

2 for h = H/ε2 < 1. Near this critical
point, the scaling forms of specific heat, compressibility
and susceptibility in dimensionless units are given by

cV
|c|t

≈ − 2√
πt
G
(

2(µ̃− µ̃c)
t

)
, (C3)

κ̃ ≈ − 2√
πt
F
(

2(µ̃− µ̃c)
t

)
, (C4)

χ̃ ≈ 0. (C5)

where the functions G(x) = 3
16Li 3

2
(−ex)− 1

4xLi 1
2
(−ex) +

1
4x

2Li− 1
2
(−ex) and F(x) = Li− 1

2
(−ex).

2. Vacuum – Fully Polarized

The phase boundary for the phase transition from V
to F phase are µ̃c = −h2 , for h > 1; the scaling forms in
dimensionless units are

cV
|c|t

≈ − 1

2
√

2πt
H
(
µ̃− µ̃c
t

)
, (C6)

κ̃ ≈ − 1

2
√

2πt
F
(
µ̃− µ̃c
t

)
, (C7)

χ̃ ≈ − 1

8
√

2πt
F
(
µ̃− µ̃c
t

)
, (C8)

where H(x) = 3
4Li 3

2
(−ex)− xLi 1

2
(−ex) + x2Li− 1

2
(−ex).

3. Pair – Partially Polarized

The critical fields for the phase transition from P to
F+P phase are µ̃c = −h2 + 4

3π (1 − h)
3
2 , for h < 1; the

scaling forms are

cV
|c|t

≈ − 1

2
√

2πt
R
(
µ̃− µ̃c
t

)
, (C9)

κ̃ ≈ κo1 −
λ1

2
√

2πt
F
(
µ̃− µ̃c
t

)
, (C10)

χ̃ ≈ − λ2

8
√

2πt
F
(
µ̃− µ̃c
t

)
, (C11)

where b = (1 − h)
(
1 + 2

π

√
1− h

)
, λ1 = 1 + 2

√
b

π −
10b
π2 ,

λ2 = 1− 3
√
b

π + 6b
π2 , κo1 = 2

π
√
b
λ1 andR(x) = 3

4Li 3
2
(−ex)−

xLi 1
2
(−ex) + x2Li− 1

2
(−ex).
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4. Fully – Partially Polarized

For the phase transition from F to F+P phase, we have
µ̃c = − 1

2 + 1
3π (h− 1)

3
2 , h > 1; with scaling forms

cV
|c|t

≈ − 1

2
√

2πt
S
(

2(µ̃− µ̃c)
t

)
, (C12)

κ̃ ≈ κo3 −
λ3

2
√

2πt
F
(

2(µ̃− µ̃c)
t

)
, (C13)

χ̃ ≈ χo4 −
λ4

8
√

2πt
F
(

2(µ̃− µ̃c)
t

)
. (C14)

where the constants are given by a = (h −
1)
(
1 + 2

3π

√
h− 1

)
, λ3 = 4

√
2
(

1 +
√
a√

2π
− a

π2

)
, λ4 =

8
√

2a
π2 , κo3 = 1

2
√

2π
√
a
, and χo4 = 1

8
√

2π
√
a

(
1− 3

√
a

π

)
.

The dimensionless function is given by S(x) =
3

2
√

2
Li 3

2
(−ex) −

√
2xLi 1

2
(−ex) +

√
2x2Li− 1

2
(−ex). The

slopes of the Wilson ratio curves at the critical point
µ = µc reveal a unique temperature-dependent feature,

namely the slope at the critical point,
(
∂Rκw
∂µ

)
µc
≡ Cr

T is

given as

cr =
rπ2

3

(F ′(0)G(0)−F(0)G′(0))

G(0)2
, (C15)

i.e. is a constant for the phase transition from vacuum
into an r-complex TLL phase.

5. Susceptibilities for the gaped phase in the
attractive SU(w) gases

The total polarization of SU(w) gas can be expressed
as m̃ =

∑w
r=1

1
2 ñrr(w − r), then we can obtain the sus-

ceptibility:

χ̃r =
∂m̃

∂h̃r
=

w∑
k,l=1

1

2
k(w − k)

∂2p̃(l)

∂h̃k∂h̃r
(C16)

in the limit of t → 0 and |c| >> 1, the leading behavior
of the second order derivatives of pressures reads

∂2p̃l

∂h̃k∂h̃r
≈ −
√
r

2

t−
1
2

√
π

Li− 1
2
(−e

Ã(r)

t )δl,kδl,r. (C17)

Substituting (C17) into (C16), we arrive at the explicit
form of the susceptibility χ̃r corresponding to the field
Hr when the other fields are fixed

χ̃r ≈ −
t−

1
2

4
√

2π

√
r(w − r)r Li− 1

2
(−e

Ã(r)

t )

≈ t−
1
2

4
√

2π

√
r(w − r)r e−

∆r
t , (C18)

where the gap ∆r is related to the effective chemical po-
tential through ∆r = −Ã(r), which can be determined
from the TBA equations

Ã(r) = rµ̃−
w∑

m=1

min(r,m)∑
q = 1

2q 6= r +m

4p̃m

m(r +m− 2q)
. (C19)

Here the second approximately equal in (C18) holds when
∆r > 0 which implies the existence of the gap and the
susceptibility presents exponential decay, otherwise χ̃r ≈√

r(w−r)r
4
√

2π
√
−∆r

, which is a positive constant when t → 0.

Note that the result in (C18) is different by a factor 1
2

due to the convention of H1 = H/2 in the SU(2) case.

APPENDIX D: EXPLICIT FORMULAS FOR THE
SU(2) FERMI GAS

In the mixed phase for SU(2) Fermi gas with one
magnetic field H1, we have n = 2n2 + n1 and χ1,1 =
(µBg)2 (∂n1/∂µ1)n, χ1,2 = 2(µBg)2 (∂n2/∂µ2)n, with the
stiffnesses in canonical ensemble Dχ

1 = 1
~π (∂µ1/∂n1)n,

Dχ
2 = 2

~π (∂µ2/∂n2)n. Similarly, κ1 = (∂n1/∂µ1)H
and κ2 = 2 (∂n2/∂µ2)H with Dκ

2 = 2
~π (∂µ2/∂n2)H ,

Dκ
1 = 1

~π (∂µ1/∂n1)H defined in the grand canonical en-
semble.

For strong coupling, we find the explicit form of the
µr in terms of the densities of pairs n2 and unpaired
fermions n1 (in units of ~2/(2m)) [45] to be

µ2 ≈ π2

(
n2

2

4
+

2n3
2

3|c|
+
n2

2n1

|c|
+

4n3
1

3|c|
+

3n2
1n

2
2

c2
+

5n4
2

4c2

+
4n1n

3
2

c2
+

16n3
1n2

c2

)
, (D1)

µ1 ≈ π2

(
n2

1 +
8n2

1n2

|c|
+

2n3
2

3|c|
+

48n2
1n

2
2

c2
+

4n3
2n1

c2

+
2n4

2

c2

)
. (D2)

Here c = mg1D/~2 = −2/a1D is the interaction strength.
Therefore, the compressibilities and susceptibilities are
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given by (in units of ~2/(2m)), e.g.

κ−1
2 ≈ π2n2

4

(
1 +

6n1

|c|
+

4n2

|c|
+

n2
2

2|c|n1
+

24n2
1

c2

+
24n1n2

c2
+

17n2
2

c2
− 2n3

2

c2n1
+

n4
2

4c2n2
1

)
, (D3)

κ−1
1 ≈ 2π2n1

(
1 +

12n2

|c|
+

16n2
1

|c|n2
+

96n2
2

c2
+

384n2
1

c2

−8n1n2

c2
− 96n3

1

c2n2
+

256n4
1

c2n2

)
(D4)

χ−1
1,1 = π2n2

[
1 +

4

|c|
(n− 3n2) +

3

c2
(4n2

−24nn2 + 30n2
2)
]
, (D5)

χ−1
1,2 = 8π2n1

[
1 +

4

|c|
(n− 2n1) +

4

c2
(2n2

+10n2
1 − 12nn1)

]
. (D6)

In the above calculation for compressibility, the condition
H = 2(µ1 − µ2) + c2/4 was used, i.e. dH = 0 gives (up
to the O

(
1
c2

)
order):

dn1

dn2
=

n2

4n1

(
1− 8n2

|c|
+

6n1

|c|
+

n2
2

2|c|n1
− 16n2

1

|c|n2

)
. (D7)

Moreover, the interaction effect enters into the collective
velocities v1, v2 of the excess fermions and bound pairs.
For strong attraction, they are given by [27]

v1 ≈
~

2m
2πn1

(
1 + 8n2/|c|+ 48n2

2/c
2
)
,

v2 ≈
~

2m
πn2

(
1 + 2A/|c|+ 3A2/c2

)
, (D8)

with A = 2n1 + n2.

APPENDIX E: CONNECTION BETWEEN THE
LUTTINGER AND FERMI LIQUIDS

Wilson Ratios. Now we further build up a connec-
tion between the TLL and the Fermi liquid. By definition
(1) and (2), the two type of Wilson ratios of interacting
Fermi liquid in 3D are given by

RχW =
1

1 + F a0
, RκW =

1

1 + F s0
(E1)

which depends on Landau parameters F a,s0 charactering
the interaction. This is very similar to our finding for 1D
systems, see Eqs. (12) and (13). However, it’s extremely
hard to calculate the Landau parameters F s,a0,1 in Fermi

liquid theory due to the reason that N∗(0) can not be
obtained explicitly. Fermi liquid theory elegantly maps
an interacting system into a free fermion system where
the interaction is encoded into the density of state and
effective mass. But the Fermi liquid theory is not valid

in 1D interacting systems because there does not exist
a well-defined quasiparticle. Here we demonstrate that
exact solution of the TBA equations does show the Fermi
liquid like signature in 1D interacting systems. In fact,
the additivity rules which we found in previous sections
reflect a 1D Fermi liquid like nature, also see a discussion
in [16].
Feedback interaction. The excitations near Fermi

points in 1D many-body systems can form a collective
motion independent of microscopic details of systems,
namely, there exists a certain dispersion relation between
energy and momentum. We observe that integrable sys-
tems provide a deep understanding of the intrinsic con-
nection between the TLL and the Fermi liquid. In fact,
the TBA equations of 1D systems give the exact dressed
energies and determine the dispersion relations of each
branch. At low temperatures, only the behavior of the
dressed energies near the zero point, or saying, the kF
and vF at the 1D Fermi points, determines the first or-
der and second orders of thermodynamic quantities. In
general, for the attractive SU(N) Fermi gases, the spin
fluctuations are suppressed. Therefore the TBA equa-
tions can be rewritten as

ε(r)(k) =ε0r(k)−
N∑
s=1

Ars ∗ ε(s)
− (k), (r = 1, 2, · · · , w),

Amn =

min(m,n)∑
q=1

am+n−q (E2)

where ε0r = ~2

2mr(k
2 − µr) = p2

2rm −
~2

2mrµr is the first
order coefficient describing excitation energy of a single
r-complex, here µr the effective chemical potential. Here
p = ~k. The function am(x) is defined in Appendix A.
These equations show a similar form of ’feedback interac-
tion’ equation in the Landau Fermi liquid theory [15, 16].
This encourage us to further find a perturbation idea into
our calculations. What below gives a Fermi liquid like de-
scription for the low energies of the 1D attractive Fermi
gases, i.e. mapping an interacting system with multi-
subsystems to a multicomponent free system.
Phenomenological description. The symmetry

group of the interaction of quasi particles is the 1D
“Fermi liquid” is reduced from the SO(3) group to the
cyclic group C2. Therefore, interaction parameter be-
tween the ’quasi’ momentum p and p′ could be written
as fs,ap,p′ = fs,a0 + fs,a1 sign(p · p′). Then following the con-
ventional Fermi liquid theory’s derivation, we still have
Landau parameters F s,a0,1 , which are interacting parame-

ters [16] and describe the main properties of our system.
Conventional sound velocity is associated with oscilla-
tions in the density of a fluid, and hydrodynamics gives
that

v2 =
κ

ρ
=

κ

mn
. (E3)

Where ρ = mn is the density of the fluid and κ = −L∂P∂L
is the bulk modulus. In FL theory κ = n2

N∗(0) (1 + F s0 ),
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where the N∗(0) denotes the density of state in momen-
tum space near Fermi surface, therefore the velocity of
first sound is given by

v2 =
n

mN∗(0)
(1 + F s0 ) (E4)

By the 1D analog of Fermi liquid theory, we have the
relations [16] n = pF

π , N∗(0) = 1
π
m∗

pF
and m = m∗(1 +

F s1 ). Then we obtain:

v2 = v2
F (1 + F s0 )(1 + F s1 ). (E5)

Here, due to the collective motion, the backflow does not
exist in 1D, therefore F s1 ≈ 0. This can be seen from the
dressed energy equation (E2), where the effective mass
rm is almost unchanged up to the order of O(c−2) in
strong coupling regime.

Consistency. Using the exact solutions, we can cal-
culate the Wilson ratio RcW for different phases of TLLs.
For a single state of a r-complex, the Wilson ratio is
known as Rc

W = 1/(1 + F s0 ). Then the parameter F s0,1
could be determined by a comparison with the Bethe
ansatz result in strong coupling limit (i.e. |c| → ∞) via

Rc
W =


1; for free fermions

4; for pairs

9; for trions

. (E6)

From the equation (E5) and (E6) we could calculate the
relation between Fermi speed and sound velocity. For ex-

ample, the velocities of trions, pairs and single fermionic
atoms, are given by

v3 =
1

3
v

(3)
F ; v2 =

1

2
v

(2)
F ; v1 = v

(1)
F , (E7)

respectively. This builds up an intrinsic connection be-
tween the Luttinger liquid and Fermi liquid.

Furthermore, from the free fermion nature of the Fermi
liquid, we can express the specific heat in terms of these
sound velocities

cV
T

=
π

3

(
1

v1
F

+
2

v2
F

+
3

v3
F

)
=
π

3

(
1

v1
+

1

v2
+

1

v3

)
,(E8)

where we have dropped the unit k2
B~−1, here the interac-

tion effect is encoded in the velocities v1,2,3. This equa-
tion could be obtained by consiering the leading term
of the TBA equations at low temperature region. This
shows a consistency of our derivation by the 1D Fermi
liquid like description. The derivation above could be ex-
tended to the SU(w) attractive Fermi gases in a straight-
forward way. All the derivation above could be directly
extended to the SU(w) attractive Fermi gases:

cV
T

=
π

3

(
1

v1
+

1

v2
+ · · ·+ 1

vw

)
. (E9)

We can also prove this additivity rule using the TBA
equations, see Appendix B.
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