626 research outputs found

    Determining layer number of two dimensional flakes of transition-metal dichalcogenides by the Raman intensity from substrate

    Full text link
    Transition-metal dichalcogenide (TMD) semiconductors have been widely studied due to their distinctive electronic and optical properties. The property of TMD flakes is a function of its thickness, or layer number (N). How to determine N of ultrathin TMDs materials is of primary importance for fundamental study and practical applications. Raman mode intensity from substrates has been used to identify N of intrinsic and defective multilayer graphenes up to N=100. However, such analysis is not applicable for ultrathin TMD flakes due to the lack of a unified complex refractive index (n~\tilde{n}) from monolayer to bulk TMDs. Here, we discuss the N identification of TMD flakes on the SiO2_2/Si substrate by the intensity ratio between the Si peak from 100-nm (or 89-nm) SiO2_2/Si substrates underneath TMD flakes and that from bare SiO2_2/Si substrates. We assume the real part of n~\tilde{n} of TMD flakes as that of monolayer TMD and treat the imaginary part of n~\tilde{n} as a fitting parameter to fit the experimental intensity ratio. An empirical n~\tilde{n}, namely, n~eff\tilde{n}_{eff}, of ultrathin MoS2_{2}, WS2_{2} and WSe2_{2} flakes from monolayer to multilayer is obtained for typical laser excitations (2.54 eV, 2.34 eV, or 2.09 eV). The fitted n~eff\tilde{n}_{eff} of MoS2_{2} has been used to identify N of MoS2_{2} flakes deposited on 302-nm SiO2_2/Si substrate, which agrees well with that determined from their shear and layer-breathing modes. This technique by measuring Raman intensity from the substrate can be extended to identify N of ultrathin 2D flakes with N-dependent n~\tilde{n} . For the application purpose, the intensity ratio excited by specific laser excitations has been provided for MoS2_{2}, WS2_{2} and WSe2_{2} flakes and multilayer graphene flakes deposited on Si substrates covered by 80-110 nm or 280-310 nm SiO2_2 layer.Comment: 10 pages, 4 figures. Accepted by Nanotechnolog

    Electric field thermopower modulation analyses of the operation mechanism of transparent amorphous SnO2_2 thin-film transistor

    Get PDF
    Transparent amorphous oxide semiconductors (TAOSs) based transparent thin-film transistors (TTFTs) with high field effect mobility are essential for developing advanced flat panel displays. Among TAOSs, amorphous (a-) SnO2_2 has several advantages against current a-InGaZnO4 such as higher field effect mobility and being indium free. Although a-SnO2_2 TTFT has been demonstrated several times, the operation mechanism has not been clarified thus far due to the strong gas sensing characteristics of SnO2_2. Here we clarify the operation mechanism of a-SnO2_2 TTFT by electric field thermopower modulation analyses. We prepared a bottom-gate top-contact type TTFT using 4.2-nm-thick a-SnO2_2 as the channel without any surface passivation. The effective thickness of the conducting channel was ~1.7 + - 0.4 nm in air and in vacuum, but a large threshold gate voltage shift occurred in different atmospheres; this is attributed to carrier depletion near at the top surface (~2.5 nm) of the a-SnO2_2 due to its interaction with the gas molecules and the resulting shift in the Fermi energy. The present results would provide a fundamental design concept to develop a-SnO2_2 TTFT

    Identification and pharmacokinetics of saponins in Rhizoma Anemarrhenae after oral administration to rats by HPLC-Q-TOF/MS and HPLC-MS/MS

    Get PDF
    Rhizoma Anemarrhenae is a well-known herbal medicine with saponins as its commonly regarded major bioactive components. It is essential to classify the properties of saponins which are associated with their toxicity and efficacy. In this study, 25 compounds were identified by HPLC-Q-TOF/MS in the extract of Rhizoma Anemarrhenae and 8 saponins were detected in rat plasma by HPLC-MS/MS after oral administration of this extract. These were neomangiferin, mangiferin, timosaponin E1, timosaponin E, timosaponin B-II, timosaponin B-III, timosaponin A-III and timosaponin A-I. A sensitive and accurate HPLC-MS/MS method was developed and successfully applied to a pharmacokinetic study of the abovementioned eight saponins after oral administration of the Rhizoma Anemarrhenae extract to rats. The method validation, including specificity, linearity, precision, accuracy, recovery, matrix effect and robustness, met the requirements of the intended use. The pharmacokinetic parameter, Tmax value, ranged from 2 to 8 h for these eight saponins whereas their elimination half-life (t1/2) ranged from 4.06 to 9.77 h, indicating slow excretion. The plasma concentrations of these eight saponins were all very low, indicating a relatively low oral bioavailability. All these results provide support for further clinical studies
    corecore