844 research outputs found

    Expression and clinical significance of <i>Pax6</i> gene in retinoblastoma

    Get PDF
    AIM: To discuss the expression and clinical significance of <i>Pax6 </i>gene in retinoblastoma(Rb). <p>METHODS: Totally 15 cases of fresh Rb organizations were selected as observation group and 15 normal retinal organizations as control group. Western-Blot and reverse transcriptase polymerase chain reaction(RT-PCR)methods were used to detect <i>Pax6</i> protein and <i>Pax6 </i>mRNA expressions of the normal retina organizations and Rb organizations. At the same time, Western Blot method was used to detect the <i>Pax6</i> gene downstream MATH5 and BRN3b differentiation gene protein level expression. After the comparison between two groups, the expression and clinical significance of <i>Pax6</i> gene in Rb were discussed. <p>RESULTS: In the observation group, average value of mRNA expression of <i>Pax6</i> gene was 0.99±0.03; average value of <i>Pax6</i> gene protein expression was 2.07±0.15; average value of BRN3b protein expression was 0.195±0.016; average value of MATH5 protein expression was 0.190±0.031. They were significantly higher than the control group, and the differences were statistically significant(<i>P</i><0.05). <p>CONCLUSION: Abnormal expression of <i>Pax6</i> gene is likely to accelerate the occurrence of Rb

    2,10-Dibromo-6-isobutyl-6-methyl­dibenzo[d,f][1,3]dioxepine

    Get PDF
    In the crystal structure of the title compound, C18H18Br2O2, the two benzene rings of the bridged biphenyl unit are twisted by 38.0 (1)°

    3,9-Dibromo-5,7-dihydro­dibenzo[c,e]oxepine

    Get PDF
    The title compound, C14H10Br2O, is a biphenyl derivative containing a –CH2—O—CH2– bridge in the 2,2′-position. The compound displays a twisted conformation with the two benzene rings making a dihedral angle of 45.02 (5)°, while the central seven-membered ring is in a boat conformation. The mol­ecule lies on a crystallographic twofold axis of symmetry passing through the O atom and bis­ecting the 1,1′ C—C bond

    Strongly-coupled nanotube electromechanical resonators

    Full text link
    Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel micro-transfer technique, we fabricate two strongly-coupled and electrically-tunable mechanical resonators on a single carbon nanotube for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and strong coupling is observed between the electron charge and phonon modes of each resonator. Furthermore, the conductance of either resonator can be nonlocally modulated by the phonon modes in the other resonator. Strong coupling is observed between the phonon modes of the two resonators, which provides an effective long distance electron-electron interaction. The generation of phonon-mediated-spin entanglement is also theoretically analyzed for the two resonators. This strongly-coupled nanotube electromechanical resonator array provides an experimental platform for future studies of the coherent electron-phonon interaction, the phonon mediated long-distance electron interaction, and entanglement state generation

    2,10-Dibromo-6,6-dimethyl­dibenzo[d,f][1,3]dioxepine

    Get PDF
    In the crystal structure of the title compound, C15H12Br2O2, which was synthesized from 2,10-dibromo-2,2′-dihydroxy­biphenyl and 2,2-dimethoxy­propane, the aromatic rings are twisted by 35 (1)°. The heterocyclic ring exhibits a twisted conformation

    In vitro evaluation of anticancer nanomedicines based on doxorubicin and amphiphilic Y-shaped copolymers

    Get PDF
    Four monomethoxy poly(ethylene glycol)-poly(L-lactide-co-glycolide)2 (mPEG-P( LA-co-GA)2) copolymers were synthesized by ring-opening polymerization of L-lactide and glycolide with double hydroxyl functionalized mPEG (mPEG-(OH)2) as macroinitiator and stannous octoate as catalyst. The copolymers self-assembled into nanoscale micellar/vesicular aggregations in phosphate buffer at pH 7.4. Doxorubicin (DOX), an anthracycline anticancer drug, was loaded into the micellar/vesicular nanoparticles, yielding micellar/vesicular nanomedicines. The in vitro release behaviors could be adjusted by content of hydrophobic polyester and pH of the release medium. In vitro cell experiments showed that the intracellular DOX release could be adjusted by content of P(LA-co-GA), and the nanomedicines displayed effective proliferation inhibition against Henrietta Lacks’s cells with different culture times. Hemolysis tests indicated that the copolymers were hemocompatible, and the presence of copolymers could reduce the hemolysis ratio of DOX significantly. These results suggested that the novel anticancer nanomedicines based on DOX and amphiphilic Y-shaped copolymers were attractive candidates as tumor tissular and intracellular targeting drug delivery systems in vivo, with enhanced stability during circulation and accelerated drug release at the target sites

    Application of Herbal Traditional Chinese Medicine in the Treatment of Acute Kidney Injury

    Get PDF
    Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid loss of renal function, which may further develop into chronic kidney damage (CKD) or even end-stage renal disease (ESRD). AKI is a global health problem associated with high morbidity and costly treatments, and there is no specific or effective strategy to treat AKI. In recent years, Traditional Chinese Medicine (TCM) has attracted more attention, with lines of evidence showing that application of TCM improved AKI, and the mechanisms of action for some TCMs have been well illustrated. However, reviews summarizing the progress in this field are still lacking. In this paper, we reviewed TCM preparations and TCM monomers in the treatment of AKI over the last 10 years, describing their renal protective effects and mechanisms of action, including alleviating inflammation, programmed cell death, necrosis, and reactive oxygen species. By focusing on the mechanisms of TCMs to improve renal function, we provide effective complementary evidence to promote the development of TCMs to treat AKI. Moreover, we also summarized TCMs with nephrotoxicity, which provides a more comprehensive understanding of TCMs in the treatment of AKI. This review may provide a theoretical basis for the clinical application of TCMs in the future
    corecore