64 research outputs found

    The Role of Perfusion Computed Tomography in the Prediction of Cerebral Hyperperfusion Syndrome

    Get PDF
    Hyperperfusion syndrome (HPS) following carotid angioplasty with stenting (CAS) is associated with significant morbidity and mortality. At present, there are no reliable parameters to predict HPS. The aim of this study was to clarify whether perfusion computed tomography (CT) is a feasible and reliable tool in predicting HPS after CAS.We performed a retrospective case-control study of 54 patients (11 HPS patients and 43 non-HPS) with unilateral severe stenosis of the carotid artery who underwent CAS. We compared the prevalence of vascular risk factors and perfusion CT parameters including regional cerebral blood volume (rCBV), regional cerebral blood flow (rCBF), and time to peak (TTP) within seven days prior to CAS. Demographic information, risk factors for atherosclerosis, and perfusion CT parameters were evaluated by multivariable logistic regression analysis. The rCBV index was calculated as [(ipsilateral rCBV - contralateral rCBV)/contralateral rCBV], and indices of rCBF and TTP were similarly calculated. We found that eleven patients had HPS, including five with intracranial hemorrhages (ICHs) of whom three died. After a comparison with non-HPS control subjects, independent predictors of HPS included the severity of ipsilateral carotid artery stenosis, 3-hour mean systolic blood pressure (3 h SBP) after CAS, pre-stenting rCBV index >0.15 and TTP index >0.22.The combination of severe ipsilateral carotid stenosis, 3 h SBP after CAS, rCBV index and TTP index provides a potential screening tool for predicting HPS in patients with unilateral carotid stenosis receiving CAS. In addition, adequate management of post-stenting blood pressure is the most important treatable factor in preventing HPS in these high risk patients

    Knowledge capital and spillover on regional economic growth: Evidence from China

    No full text
    Though the determinants of regional economic growth in China have been widely discussed in previous studies, the effects of knowledge capital and spillover have been less systematically investigated. This paper assesses how and to what extent knowledge capital and technology spillover contribute to regional economic growth in China. Moreover, the absorptive ability played by human capital on acquiring advanced foreign technologies is also investigated in this study. Empirical results show that knowledge capital, both of R&D capital and technology imports contribute significantly, with similar impact, to regional economic growth. The analyses also suggest the existence of R&D spillovers as well as international knowledge spillovers. Moreover, a region's absorptive ability is considered as the critical capability to absorb external knowledge sources embodied in FDI and imports, which then contribute to the regional economic growth.O18 O33 O40 R& D Technology import Spillover Growth China

    A Green Microbial Fuel Cell-Based Biosensor for In Situ Chromium (VI) Measurement in Electroplating Wastewater

    No full text
    The extensive use of Cr(VI) in many industries and the disposal of Cr(VI)-containing wastes have resulted in Cr(VI)-induced environmental contamination. Cr(VI) compounds are associated with increased cancer risks; hence, the detection of toxic Cr(VI) compounds is crucial. Various methods have been developed for Cr(VI) measurement, but they are often conducted offsite and cannot provide real-time toxicity monitoring. A microbial fuel cell (MFC) is an eco-friendly and self-sustaining device that has great potential as a biosensor for in situ Cr(VI) measurement, especially for wastewater generated from different electroplating units. In this study, Exiguobacterium aestuarii YC211, a facultatively anaerobic, Cr(VI)-reducing, salt-tolerant, and exoelectrogenic bacterium, was isolated and inoculated into an MFC to evaluate its feasibility as a Cr(VI) biosensor. The Cr(VI) removal efficiency of E. aestuarii YC211 was not affected by the surrounding environment (pH 5–9, 20–35 °C, coexisting ions, and salinity of 0–15 g/L). The maximum power density of the MFC biosensor was 98.3 ± 1.5 mW/m2 at 1500 Ω. A good linear relationship (r2 = 0.997) was observed between the Cr(VI) concentration (2.5–60 mg/L) and the voltage output. The developed MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in the actual electroplating wastewater that is generated from different electroplating units within 30 min with low deviations (−6.1% to 2.2%). After treating the actual electroplating wastewater with the MFC, the predominant family in the biofilm was found to be Bacillaceae (95.3%) and was further identified as the originally inoculated E. aestuarii YC211 by next generation sequencing (NGS). Thus, the MFC biosensor can measure Cr(VI) concentrations in situ in the effluents from different electroplating units, and it can potentially help in preventing the violation of effluent regulations

    Protective Effects of Licochalcone A Improve Airway Hyper-Responsiveness and Oxidative Stress in a Mouse Model of Asthma

    No full text
    Licochalcone A was isolated from Glycyrrhiza uralensis and previously reported to have antitumor and anti-inflammatory effects. Licochalcone A has also been found to inhibit the levels of Th2-associated cytokines in the bronchoalveolar lavage fluid (BALF) of asthmatic mice. However, the molecular mechanism underlying airway inflammation and how licochalcone A regulates oxidative stress in asthmatic mice are elusive. In this study, we investigated whether licochalcone A could attenuate inflammatory and oxidative responses in tracheal epithelial cells, and whether it could ameliorate oxidative stress and airway inflammation in asthmatic mice. Inflammatory human tracheal epithelial (BEAS-2B) cells were treated with licochalcone A to evaluate oxidative responses and inflammatory cytokine levels. In addition, BALB/c mice were sensitized with ovalbumin (OVA) and injected intraperitoneally with licochalcone A (5 or 10 mg/kg). Licochalcone A significantly inhibited reactive oxygen species, eotaxin, and proinflammatory cytokines in BEAS-2B cells. Licochalcone A also decreased intercellular adhesion molecule 1 levels in inflammatory BEAS-2B cells, blocking monocyte cell adherence. We also found that licochalcone A significantly decreased oxidative responses, reduced malondialdehyde levels, and increased glutathione levels in the lungs of OVA-sensitized mice. Furthermore, licochalcone A decreased airway hyper-responsiveness, eosinophil infiltration, and Th2 cytokine production in the BALF. These findings suggest that licochalcone A alleviates oxidative stress, inflammation, and pathological changes by inhibiting Th2-associated cytokines in asthmatic mice and human tracheal epithelial cells. Thus, licochalcone A demonstrated therapeutic potential for improving asthma
    corecore