49 research outputs found

    Inverse problems with inexact forward operator : iterative regularization and application in dynamic imaging

    Get PDF
    The classic regularization theory for solving inverse problems is built on the assumption that the forward operator perfectly represents the underlying physical model of the data acquisition. However, in many applications, for instance in microscopy or magnetic particle imaging, this is not the case. Another important example represent dynamic inverse problems, where changes of the searchedfor quantity during data collection can be interpreted as model uncertainties. In this article, we propose a regularization strategy for linear inverse problems with inexact forward operator based on sequential subspace optimization methods (SESOP). In order to account for local modelling errors, we suggest to combine SESOP with the Kaczmarz’ method. We study convergence and regularization properties of the proposed method and discuss several practical realizations. Relevance and performance of our approach are evaluated at simulated data from dynamic computerized tomography with various dynamic scenarios

    A Role for the Retinoblastoma Protein As a Regulator of Mouse Osteoblast Cell Adhesion: Implications for Osteogenesis and Osteosarcoma Formation

    Get PDF
    The retinoblastoma protein (pRb) is a cell cycle regulator inactivated in most human cancers. Loss of pRb function results from mutations in the gene coding for pRb or for any of its upstream regulators. Although pRb is predominantly known as a cell cycle repressor, our data point to additional pRb functions in cell adhesion. Our data show that pRb regulates the expression of a wide repertoire of cell adhesion genes and regulates the assembly of the adherens junctions required for cell adhesion. We conducted our studies in osteoblasts, which depend on both pRb and on cell-to-cell contacts for their differentiation and function. We generated knockout mice in which the RB gene was excised specifically in osteoblasts using the cre-lox P system and found that osteoblasts from pRb knockout mice did not assemble adherens junction at their membranes. pRb depletion in wild type osteoblasts using RNAi also disrupted adherens junctions. Microarrays comparing pRb-expressing and pRb-deficient osteoblasts showed that pRb controls the expression of a number of cell adhesion genes, including cadherins. Furthermore, pRb knockout mice showed bone abnormalities consistent with osteoblast adhesion defects. We also found that pRb controls the function of merlin, a well-known regulator of adherens junction assembly, by repressing Rac1 and its effector Pak1. Using qRT-PCR, immunoblots, co-immunoprecipitation assays, and immunofluorescent labeling, we observed that pRb loss resulted in Rac1 and Pak1 overexpression concomitant with merlin inactivation by Pak1, merlin detachment from the membrane, and adherens junction loss. Our data support a pRb function in cell adhesion while elucidating the mechanism for this function. Our work suggests that in some tumor types pRb inactivation results in both a loss of cell cycle control that promotes initial tumor growth as well as in a loss of cell-to-cell contacts, which contributes to later stages of metastasis

    Disabling methodologies

    No full text
    In efforts to generate inclusive schooling, educational policy makers and teachers presumably need to know what the terms of exclusion have been and how inclusion would operate. If disability's definition and, hence, identification is constitutionally unstable however, inclusive schooling becomes a more ambiguous affair. This article examines the methodologies deployed to analyse disability in cultural perspective. It maps critical/feminist and critical post-structural methodologies for treating definitional difficulties. It problematises the notion of cross-culture by analysing the play of a Westernness in different accounts. It suggests that definitional ‘dilemmas’ noted in studies of disability and culture are not resolved by critical/feminist or critical post-structural approaches. The difficulty of definition is grounded more broadly in a moment that seeks to notice itself, particularly through the play of language and appeals to historical relativity. The ‘resolution’ that the article suggests is the article itself: to map the insideness of outsideness in regard to ‘culture’ and ‘persons’, and to locate the activity of mapping as another colonising effect of scientific thought

    Surface water linkages regulate trophic interactions in a groundwater food web

    No full text
    Groundwaters are increasingly viewed as resource- limited ecosystems in which fluxes of dissolved organic carbon (DOC) from surface water are effi- ciently mineralized by a consortium of microorgan- isms which are grazed by invertebrates. We tested for the effect of groundwater recharge on resource supply and trophic interactions by measuring phys- ico-chemistry, microbial activity and biomass, structure of bacterial communities and invertebrate density at three sites intensively recharged with surface water. Comparison of measurements made in recharge and control well clusters at each site showed that groundwater recharge significantly increased fluxes of DOC and phosphate, elevated groundwater temperature, and diminished dissolved oxygen (DO). Microbial biomass and activity were significantly higher in recharge well clusters but stimulation of autochthonous microorganisms was not associated with a major shift in bacterial community structure. Invertebrate assemblages were not significantly more abundant in recharge well clusters and did not show any relationship with microbial biomass and activity. Microbial communities were bottom-up regulated by DOC and nutrient fluxes but trophic interactions between microorganisms and invertebrates were apparently limited by environmental stresses, particularly DO depletion and groundwater warming. Hydrological connectivity is a key factor regulating the function of DOC-based groundwater food webs as it influ- ences both resource availability for microorganisms and environmental stresses which affect energy transfer to invertebrates and top-down control on microorganisms
    corecore