11 research outputs found

    Experimental of oxygenated fuel on diesel engine: fuel properties, performance and emission

    Get PDF
    The main purpose of the study was to characterise the effects of diesel, biodiesel blends B5M10 and B10M10 and emulsion fuels B5M10E3 and B10M10E3 as fuels for the impact on particulate matter emission. Engine tests have been performed to obtain results of engine performance, gas emission and particulate matter with various cycles. Excel analysis methods were used to analyze the data obtained. The B5M10E3 produces lower emission results than B10M10E3 as biodiesel fuel increases the combustion temperature. In conclusion, biodiesel blends can actually reduce emissions of particulate matter and gas emissions compared to diesel but increase emissions. Therefore, the emulsion fuel B5M10E3 and B10M10E3 can be the best alternative fuel for the future

    Development of nanolubricant automotive air conditioning (AAC) test rig

    No full text
    Nanolubricant been introduced in compressor might improve the performance of automotive air conditioning system. Prior testing of the nanolubricant enhancement performance, an automotive air conditioning (AAC) system test rig base on compact car has to be developed; therefore this paper presented the development process of AAC test rig. There are 15 thermocouples, 2 pressure gauges and power analyzer were assembled on the system in order to analyse its performance. The experiment was conducted with four different charged of refrigerant. The charging was based on initial weight charged. At each quantity of refrigerant charge, performance of the AAC system was evaluated by determining three important parameters which is cooling capacity, compressor work and coefficient of performance (COP). The maximum average COP is achieved at 900 RPM is 7.07. The average and maximum COP enhancement of 7.07 % and 13.34 % were achieved by applying SiO2 nanolubricant inside the compressor

    Development of nanolubricant automotive air conditioning (AAC) test rig

    No full text
    Nanolubricant been introduced in compressor might improve the performance of automotive air conditioning system. Prior testing of the nanolubricant enhancement performance, an automotive air conditioning (AAC) system test rig base on compact car has to be developed; therefore this paper presented the development process of AAC test rig. There are 15 thermocouples, 2 pressure gauges and power analyzer were assembled on the system in order to analyse its performance. The experiment was conducted with four different charged of refrigerant. The charging was based on initial weight charged. At each quantity of refrigerant charge, performance of the AAC system was evaluated by determining three important parameters which is cooling capacity, compressor work and coefficient of performance (COP). The maximum average COP is achieved at 900 RPM is 7.07. The average and maximum COP enhancement of 7.07 % and 13.34 % were achieved by applying SiO2 nanolubricant inside the compressor

    Transient modelling of heat loading of phase change material for energy storage

    No full text
    As the development of solar energy is getting advance from time to time, the concentration solar technology also get the similar attention from the researchers all around the globe. This technology concentrate a large amount of energy into main spot. To collect all the available energy harvest from the solar panel, a thermal energy storage is required to convert the heat energy to one of the purpose such as electrical energy. With the idea of energy storage application that can be narrow down to commercial application such as cooking stove. Using latent heat type energy storage seem to be appropriate with the usage of phase change material (PCM) that can release and absorb heat energy at nearly constant temperature by changing its state. Sodium nitrate (NaNO3) and potassium nitrate (KNO3) was selected to use as PCM in this project. This paper focus on the heat loading process and the melting process of the PCM in the energy storage using a computer simulation. The model of the energy storage was created as solid three dimensional modelling using computer aided software and the geometry size of it depend on how much it can apply to boil 1 kg of water in cooking application. The materials used in the tank, heat exchanger and the heat transfer fluid are stainless steel, copper and XCELTHERM MK1, respectively. The analysis was performed using a commercial simulation software in a transient state. The simulation run on different value of velocity but kept controlled under laminar state only, then the relationship of velocity and heat distribution was studied and the melting process of the PCM also has been analyzed. On the effect of heat transfer fluid velocity, the higher the velocity resulted in higher the rate of heat transfer. The comparison between the melting percentages of the PCMs under test conditions show that NaNO3 melts quite faster than KNO3

    The role of nanoparticles on biofuel production and as an additive in ternary blend fuelled diesel engine: A review

    No full text
    In recent years renewable and cleaner fuel for diesel engines are compulsory due to depletion of fossil fuel. Various types of bio-based fuels are investigated by the researchers. Biodiesel is anticipated as potential contenders of diesel fuel. Though it is possible to utilize pure biodiesel in diesel engines, some burdens like higher density, lower cetane number and lesser calorific value hinder it from replacing conventional diesel completely. Therefore, using blends with biofuels in diesel engines has a preference. Thus, this paper reviews two different approaches on the role of nanoparticles on biofuel production and effects of nanoparticles in biodiesel–diesel fuel blends on performance, combustion analysis and emission characteristics of diesel engines. Wide range of results from previous research studies with potential and application of nanoparticles in bioethanol production, the effect of the addition of nanoparticles into diesel fuel with different biofuels ratios are collected in this review study. There are different engine performances enhancing methods surveyed. Nanoparticles can be utilized in the production of biofuels from feedstock pre-treatment to chemical reaction as catalysts. It was observed from the overall results that by adding nanoparticles, there was a significant reduction in the brake specific fuel consumption about 20% to 23% as compared with biodiesel–diesel blends with and without alcohol as additives. Besides as nanoparticles possess high thermal conductivity, the addition of nanoparticles enhanced the process of combustion and increases the brake power about 2.5% to 4%. Emission results showed that in most reviews, NOxemission is increased by up to 55%, while HC, CO and PM are decreased significantly. It was concluded from the study that a diesel engine could be effectively run and give better performance and effective regulated emissions on the application of added nanoparticles with biodiesel and their blends as fuel in a CI engine

    Transient modelling of heat loading of phase change material for energy storage

    No full text
    As the development of solar energy is getting advance from time to time, the concentration solar technology also get the similar attention from the researchers all around the globe. This technology concentrate a large amount of energy into main spot. To collect all the available energy harvest from the solar panel, a thermal energy storage is required to convert the heat energy to one of the purpose such as electrical energy. With the idea of energy storage application that can be narrow down to commercial application such as cooking stove. Using latent heat type energy storage seem to be appropriate with the usage of phase change material (PCM) that can release and absorb heat energy at nearly constant temperature by changing its state. Sodium nitrate (NaNO3) and potassium nitrate (KNO3) was selected to use as PCM in this project. This paper focus on the heat loading process and the melting process of the PCM in the energy storage using a computer simulation. The model of the energy storage was created as solid three dimensional modelling using computer aided software and the geometry size of it depend on how much it can apply to boil 1 kg of water in cooking application. The materials used in the tank, heat exchanger and the heat transfer fluid are stainless steel, copper and XCELTHERM MK1, respectively. The analysis was performed using a commercial simulation software in a transient state. The simulation run on different value of velocity but kept controlled under laminar state only, then the relationship of velocity and heat distribution was studied and the melting process of the PCM also has been analyzed. On the effect of heat transfer fluid velocity, the higher the velocity resulted in higher the rate of heat transfer. The comparison between the melting percentages of the PCMs under test conditions show that NaNO3 melts quite faster than KNO3

    The Influence of Formulation Ratio and Emulsifying Settings on Tri-Fuel (Diesel–Ethanol–Biodiesel) Emulsion Properties

    Get PDF
    In this study, an alternative fuel for compression ignition (CI) engines called tri-fuel emulsion was prepared using an ultrasonic emulsifier. The objective of the study is to investigate the effect of emulsifying settings and formulation ratio on the physicochemical properties of tri-fuel emulsions. Design of experiment (DOE) with the two-level factorial design was employed to analyze the effect of emulsifying settings such as time, amplitude, and cycle along with the variation ratio of tri-fuel emulsion components as control factors. Numbers of responses identified were important parameters that may contribute to microexplosion phenomenon in CI engine. Analysis of variance (ANOVA) was carried out for each response, and the results indicated that density, dynamic viscosity, surface tension, and average droplet size were influenced by specific preparation control factors. Furthermore, interaction among the control factors was found to affect the responses as well. Interaction means the effect of two factors together is different than what would be expected from each factor separately. Besides, the stability of the tri-fuel emulsion was observed for three months. Furthermore, a qualitative approach with a multiobjective lens digital microscope revealed the geometry of freshly made dispersed tri-fuel emulsion droplets. Microscopic examination on tri-fuel emulsion droplets has shown that the dispersed ethanol capsulated within diesel with the help of biodiesel is similar to a water in diesel emulsion and is dissimilar to commercial diesel mixed with fatty acid methyl esters found in the market

    Improvements in hydrogen production from methane dry reforming on filament-shaped mesoporous alumina-supported cobalt nanocatalyst

    Get PDF
    The mesoporous gamma-alumina (g-Al2O3) synthesized via evaporation-induced self-assembly method (EISA) using inorganic salt, Al(NO3)3$9H2O precursor and water-ethanol solvent mixture was implemented as a support for Co catalyst in methane dry reforming at 973e1073 K under 1 atm. The g-Al2O3 support possessed filament-shaped morphology with surface area of 173.4 m2 g1 and cobalt nanoparticles were successfully dispersed on support with small crystallite size of 7.8 nm. The stability of 10%Co/Al2O3 was evident for CH4 and CO2 conversions at 1023 and 1073 K. CH4 conversion could reach to 76.2% while 81.6% was observed for CO2 conversion at 1073 K. Although graphitic and amorphous carbons were unavoidably formed on used catalyst, 10%Co/Al2O3 exhibited an outstanding performance comparable to noble metals with the desired ratio of H2/CO for downstream Fischer-Tropsch process
    corecore