835 research outputs found

    The production of low-energy neutral oxygen beams by grazing-incidence neutralization

    Get PDF
    The Vanderbilt University neutral oxygen facility produces beams of low-energy neutral oxygen atoms by means of grazing-incidence collisions between ion beams and metal surfaces. Residual ions are reflected by applied electric fields. This method can utilize initial ion beams of either O(+) or O2(+) since a very large percentage of molecular oxygen ions are dissociated when they undergo grazing-incidence neutralization. The method of neutralization is applicable to low-energy beams and to all ions. Particular emphasis is on O and N2 beams for simulation of the low Earth orbit space environment. Since the beam is a pure O-neutral beam and since measurements of the interaction of the beam with solid surfaces are made spectroscopically, absolute reaction rates can be determined. The technique permits the beams to be used in conjunction with electron and photon irradiation for studies of synergistic effects. Comparisons of optical spectra of Kapton excited by 2.5-keV O, O(+), and O2(+) show significant differences. Optical spectra of Kapton excited by neutral oxygen beams of less than 1 keV have been recorded

    Optical radiation from the interaction of energetic atoms, ions, electrons, and photons with surfaces

    Get PDF
    Heavy particle, electron, and UV photon bombardment of solid surfaces has been recently observed to result in the emission of infrared, visible, and ultraviolet radiation. This effect occurs over a wide range of incident projectile energies. Line radiation arising from transitions between discrete atomic or molecular levels may be attributed to the decay of excited particles which have been sputtered or electronically/chemically desorbed from the surface. Broadband continuum radiation, which is also observed, is believed to arise either from fluorescence of the near surface bulk or from the radiative decay of desorbed excited clusters. Spacecraft, in the ambient near Earth environment, are subject to such bombardment. The dynamics of energetic particle and photon beam interactions with surfaces which lead to surface erosion and glow phenomena will be treated. In addition, projected experimental and theoretical studies of oxygen and nitrogen beam surface interactions on materials characteristic of spacecraft surfaces will be discussed

    Ultrafast Insulator-Metal Phase Transition in VO2 Studied by Multiterahertz Spectroscopy

    Get PDF
    The ultrafast photoinduced insulator-metal transition in VO2 is studied at different temperatures and excitation fluences using multi-THz probe pulses. The spectrally resolved mid-infrared response allows us to trace separately the dynamics of lattice and electronic degrees of freedom with a time resolution of 40 fs. The critical fluence of the optical pump pulse which drives the system into a long-lived metallic state is found to increase with decreasing temperature. Under all measurement conditions we observe a modulation of the eigenfrequencies of the optical phonon modes induced by their anharmonic coupling to the coherent wave packet motion of V-V dimers at 6.1 THz. Furthermore, we find a weak quadratic coupling of the electronic response to the coherent dimer oscillation resulting in a modulation of the electronic conductivity at twice the frequency of the wave packet motion. The findings are discussed in the framework of a qualitative model based on an approximation of local photoexcitation of the vanadium dimers from the insulating state.Comment: 10 pages, 8 figures submitted to Physical Review

    Injection of light into a planar dielectric waveguide of metallic walls

    Get PDF
    We study the resonant excitation of the electromagnetic modes in a planar waveguide of metallic walls - light incident on the guide from the air can transfer energy through the walls exciting normal modes of propagation. It is found theoretically that radiation propagates along the guide while the reflectivity presents a minimum. The energy of the incident radiation can be transferred to the guide almost completely when the thickness dm of the metallic wall is around two times the skin depth δ. Experimental evidence of the injection of light is presented for the system Ag/Al2O3/Ag that was grown by pulsed laser deposition

    Optical properties of subwavelength hole arrays in vanadium dioxide thin films

    Get PDF
    We demonstrate that the transmission of far- and near-field incident light through a periodic array of subwavelength holes in a vanadium-dioxide (V O2) thin film is enhanced in the infrared range with respect to transmission through the unperforated film when V O2 undergoes its semiconductor-to-metal transition. We explain this enhancement by analyzing the loss of transmitted intensity due to leaky evanescent waves inside the holes and scattering at the entrance and exit apertures. Numerical simulations based on the transfer-matrix formalism provide qualitative support for the model and reproduce the principal features of the experimental measurements

    Irradiation-induced Ag nanocluster nucleation in silicate glasses: analogy with photography

    Full text link
    The synthesis of Ag nanoclusters in sodalime silicate glasses and silica was studied by optical absorption (OA) and electron spin resonance (ESR) experiments under both low (gamma-ray) and high (MeV ion) deposited energy density irradiation conditions. Both types of irradiation create electrons and holes whose density and thermal evolution - notably via their interaction with defects - are shown to determine the clustering and growth rates of Ag nanocrystals. We thus establish the influence of redox interactions of defects and silver (poly)ions. The mechanisms are similar to the latent image formation in photography: irradiation-induced photoelectrons are trapped within the glass matrix, notably on dissolved noble metal ions and defects, which are thus neutralized (reverse oxidation reactions are also shown to exist). Annealing promotes metal atom diffusion, which in turn leads to cluster nuclei formation. The cluster density depends not only on the irradiation fluence, but also - and primarily - on the density of deposited energy and the redox properties of the glass. Ion irradiation (i.e., large deposited energy density) is far more effective in cluster formation, despite its lower neutralization efficiency (from Ag+ to Ag0) as compared to gamma photon irradiation.Comment: 48 pages, 18 figures, revised version publ. in Phys. Rev. B, pdf fil
    corecore