1,418 research outputs found

    High-Speed VCSELs with Strong Confinement of Optical Fields and Carriers

    Get PDF
    We present the design, fabrication, and performance of our latest generation high-speed oxide-confined 850-nm verticalcavity surface-emitting lasers. Excellent high-speed properties are obtained by strong confinement of optical fields and carriers. Highspeed modulation is facilitated by using the shortest possible cavity length of one half wavelength and placing oxide apertures close to the active region to efficiently confine charge carriers. The resulting strong current confinement boosts internal quantum efficiency, leading to low threshold currents, high wall-plug efficiency, and state-of-the-art high-speed properties at low bias currents. The temperature dependent static and dynamic performance is analyzed by current-power-voltage and small-signal modulation measurements

    High Speed VCSELs and VCSEL Arrays for Single and Multicore Fiber Interconnects

    Get PDF
    Our recent work on high speed 850 nm VCSELs and VCSEL arrays is reviewed. With a modulation bandwidth approaching 30 GHz, our VCSELs have enabled transmitters and links operating at data rates in excess of 70 Gbps (at IBM) and transmission over onboard polymer waveguides at 40 Gbps ( at University of Cambridge). VCSELs with an integrated mode filter for single mode emission have enabled transmission at 25 Gbps over > 1 km of multimode fiber and a speed-distance product of 40 Gbps . km. Dense VCSEL arrays for multicore fiber interconnects have demonstrated 240 Gbps aggregate capacity with excellent uniformity and low crosstalk between the 40 Gbps channels

    Dynamic properties of silicon-integrated short-wavelength hybrid-cavity VCSEL

    Get PDF
    We present a vertical-cavity surface-emitting laser (VCSEL) where a GaAs-based "half-VCSEL" is attached to a dielectric distributed Bragg reflector on silicon using ultra-thin divinylsiloxane-bis-benzocyclobutene (DVS-BCB) adhesive bonding, creating a hybrid cavity where the optical field extends over both the GaAs- and the Si-based parts of the cavity. A VCSEL with an oxide aperture diameter of 5 mu m and a threshold current of 0.4 mA provides 0.6 mW output power at 845 nm. The VCSEL exhibits a modulation bandwidth of 11 GHz and can transmit data up to 20 Gbps

    High-speed 850 nm VCSELs operating error free up to 57 Gbit/s

    Get PDF
    Error-free transmission is demonstrated at bit rates up to 57 Gbit/s back-to-back, up to 55 Gbit/s over 50 m fibre and up to 43 Gbit/s over 100 m fibre using an oxide-confined 850 nm high-speed vertical cavity surface-emitting laser with a photon lifetime optimised for high-speed data transmission

    Design of an 845-nm GaAs vertical-cavity silicon-integrated laser with an intracavity grating for coupling to a SiN waveguide circuit

    Get PDF
    A short-wavelength hybrid GaAs vertical-cavity silicon-integrated laser (VCSIL) with in-plane waveguide coupling has been designed and optimized using numerical simulations. A shallow etched silicon nitride (SiN) grating is placed inside the cavity of the hybrid vertical-cavity silicon-integrated laser to both set the polarization state of the resonant optical field and to enable output coupling to a SiN waveguide with high efficiency. The numerical simulations predict that for apertures of 4 and 6-ÎŒm oxide-confined VCSILs operating at 845-nm wavelength, a slope efficiency for the light coupled to the waveguide of 0.18 and 0.22 mW/mA is achievable, respectively, while maintaining a low threshold gain of 583 and 589 cm−1, respectively, for the lasing

    Silicon-Integrated Hybrid-Cavity 850-nm VCSELs by Adhesive Bonding: Impact of Bonding Interface Thickness on Laser Performance

    Get PDF
    The impact of bonding interface thickness on the performance of 850-nm silicon-integrated hybrid-cavity vertical-cavity surface-emitting lasers (HC-VCSELs) is investigated. The HC-VCSEL is constructed by attaching a III–V “half-VCSEL” to a dielectric distributed Bragg reflector on a Si substrate using ultrathin divinylsiloxane-bis-benzocyclobutene (DVS-BCB) adhesive bonding. The thickness of the bonding interface, defined by the DVS-BCB layer together with a thin SiO2 layer on the “half-VCSEL,” can be used to tailor the performance, for e.g., maximum output power or modulation speed at a certain temperature, or temperature-stable performance. Here, we demonstrate an optical output power of 2.3 and 0.9 mW, a modulation bandwidth of 10.0 and 6.4 GHz, and error-free data transmission up to 25 and 10 Gb/s at an ambient temperature of 25 and 85 °C, respectively. The thermal impedance is found to be unaffected by the bonding interface thickness
    • 

    corecore