8 research outputs found

    EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient Arrhythmia Classification

    Full text link
    We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification. We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption. The proposed architecture leverages the energy efficiency of transistors operating in the subthreshold region, eliminating the need for analog-to-digital converters (ADC) and static random access memory (SRAM). The system design includes a novel analog sequential Multiply-Accumulate (MAC) circuit that mitigates process, supply voltage, and temperature variations. Experimental evaluations on PhysioNet's MIT-BIH and PTB Diagnostics datasets demonstrate the effectiveness of the proposed method, achieving average balanced accuracy of 95% and 94.25% for intra-patient arrhythmia classification and myocardial infarction (MI) classification, respectively. This innovative approach presents a promising avenue for developing low-power arrhythmia classification systems with enhanced accuracy and transferability in biomedical applications.Comment: Accepted on IEEE Biomedical Circuits and Systems (BioCAS) 202

    Deep Multi-State Dynamic Recurrent Neural Networks Operating on Wavelet Based Neural Features for Robust Brain Machine Interfaces

    Get PDF
    We present a new deep multi-state Dynamic Recurrent Neural Network (DRNN) architecture for Brain Machine Interface (BMI) applications. Our DRNN is used to predict Cartesian representation of a computer cursor movement kinematics from open-loop neural data recorded from the posterior parietal cortex (PPC) of a human subject in a BMI system. We design the algorithm to achieve a reasonable trade-off between performance and robustness, and we constrain memory usage in favor of future hardware implementation. We feed the predictions of the network back to the input to improve prediction performance and robustness. We apply a scheduled sampling approach to the model in order to solve a statistical distribution mismatch between the ground truth and predictions. Additionally, we configure a small DRNN to operate with a short history of input, reducing the required buffering of input data and number of memory accesses. This configuration lowers the expected power consumption in a neural network accelerator. Operating on wavelet-based neural features, we show that the average performance of DRNN surpasses other state-of-the-art methods in the literature on both single- and multi-day data recorded over 43 days. Results show that multi-state DRNN has the potential to model the nonlinear relationships between the neural data and kinematics for robust BMIs

    Deep Multi-State Dynamic Recurrent Neural Networks Operating on Wavelet Based Neural Features for Robust Brain Machine Interfaces

    Get PDF
    We present a new deep multi-state Dynamic Recurrent Neural Network (DRNN) architecture for Brain Machine Interface (BMI) applications. Our DRNN is used to predict Cartesian representation of a computer cursor movement kinematics from open-loop neural data recorded from the posterior parietal cortex (PPC) of a human subject in a BMI system. We design the algorithm to achieve a reasonable trade-off between performance and robustness, and we constrain memory usage in favor of future hardware implementation. We feed the predictions of the network back to the input to improve prediction performance and robustness. We apply a scheduled sampling approach to the model in order to solve a statistical distribution mismatch between the ground truth and predictions. Additionally, we configure a small DRNN to operate with a short history of input, reducing the required buffering of input data and number of memory accesses. This configuration lowers the expected power consumption in a neural network accelerator. Operating on wavelet-based neural features, we show that the average performance of DRNN surpasses other state-of-the-art methods in the literature on both single- and multi-day data recorded over 43 days. Results show that multi-state DRNN has the potential to model the nonlinear relationships between the neural data and kinematics for robust BMIs

    A 41.2 nJ/class, 32-Channel On-Chip Classifier for Epileptic Seizure Detection

    No full text
    A 41.2 nJ/class, 32-channel, patient-specific onchip classification architecture for epileptic seizure detection is presented. The proposed system-on-chip (SoC) breaks the strict energy-area-delay trade-off by employing area and memoryefficient techniques. An ensemble of eight gradient-boosted decision trees, each with a fully programmable Feature Extraction Engine (FEE) and FIR filters are continuously processing the input channels. In a closed-loop architecture, the FEE reuses a single filter structure to execute the top-down flow of the decision tree. FIR filter coefficients are multiplexed from a shared memory. The 540 × 1850 μm 2 prototype with a 1kB register-type memory is fabricated in a TSMC 65nm CMOS process. The proposed on-chip classifier is verified on 2253 hours of intracranial EEG (iEEG) data from 20 patients including 361 seizures, and achieves specificity of 88.1% and sensitivity of 83.7%. Compared to the state-of-the-art, the proposed classifier achieves 27 × improvement in Energy-AreaLatency product

    Energy-Efficient Classification for Resource-Constrained Biomedical Applications

    No full text
    Biomedical applications often require classifiers that are both accurate and cheap to implement. Today, deep neural networks achieve the state-of-the-art accuracy in most learning tasks that involve large data sets of unstructured data. However, the application of deep learning techniques may not be beneficial in problems with limited training sets and computational resources, or under domain-specific test time constraints. Among other algorithms, ensembles of decision trees, particularly the gradient boosted models have recently been very successful in machine learning competitions. Here, we propose an efficient hardware architecture to implement gradient boosted trees in applications under stringent power, area, and delay constraints, such as medical devices. Specifically, we introduce the concepts of asynchronous tree operation and sequential feature extraction to achieve an unprecedented energy and area efficiency. The proposed architecture is evaluated in automated seizure detection for epilepsy, using 3074 h of intracranial EEG data from 26 patients with 393 seizures. Average F1 scores of 99.23% and 87.86% are achieved for random and block-wise splitting of data into train/test sets, respectively, with an average detection latency of 1.1 s. The proposed classifier is fabricated in a 65-nm TSMC process, consuming 41.2 nJ/class in a total area of 540×1850 μm^2 . This design improves the state-of-the-art by 27× reduction in energy-area-latency product. Moreover, the proposed gradient-boosting architecture offers the flexibility to accommodate variable tree counts specific to each patient, to trade the predictive accuracy with energy. This patient-specific and energy-quality scalable classifier holds great promise for low-power sensor data classification in biomedical applications

    A 41.2 nJ/class, 32-Channel On-Chip Classifier for Epileptic Seizure Detection

    No full text
    A 41.2 nJ/class, 32-channel, patient-specific onchip classification architecture for epileptic seizure detection is presented. The proposed system-on-chip (SoC) breaks the strict energy-area-delay trade-off by employing area and memoryefficient techniques. An ensemble of eight gradient-boosted decision trees, each with a fully programmable Feature Extraction Engine (FEE) and FIR filters are continuously processing the input channels. In a closed-loop architecture, the FEE reuses a single filter structure to execute the top-down flow of the decision tree. FIR filter coefficients are multiplexed from a shared memory. The 540 × 1850 μm 2 prototype with a 1kB register-type memory is fabricated in a TSMC 65nm CMOS process. The proposed on-chip classifier is verified on 2253 hours of intracranial EEG (iEEG) data from 20 patients including 361 seizures, and achieves specificity of 88.1% and sensitivity of 83.7%. Compared to the state-of-the-art, the proposed classifier achieves 27 × improvement in Energy-AreaLatency product

    Energy-Efficient Classification for Resource-Constrained Biomedical Applications

    No full text
    Biomedical applications often require classifiers that are both accurate and cheap to implement. Today, deep neural networks achieve the state-of-the-art accuracy in most learning tasks that involve large data sets of unstructured data. However, the application of deep learning techniques may not be beneficial in problems with limited training sets and computational resources, or under domain-specific test time constraints. Among other algorithms, ensembles of decision trees, particularly the gradient boosted models have recently been very successful in machine learning competitions. Here, we propose an efficient hardware architecture to implement gradient boosted trees in applications under stringent power, area, and delay constraints, such as medical devices. Specifically, we introduce the concepts of asynchronous tree operation and sequential feature extraction to achieve an unprecedented energy and area efficiency. The proposed architecture is evaluated in automated seizure detection for epilepsy, using 3074 h of intracranial EEG data from 26 patients with 393 seizures. Average F1 scores of 99.23% and 87.86% are achieved for random and block-wise splitting of data into train/test sets, respectively, with an average detection latency of 1.1 s. The proposed classifier is fabricated in a 65-nm TSMC process, consuming 41.2 nJ/class in a total area of 540×1850 μm^2 . This design improves the state-of-the-art by 27× reduction in energy-area-latency product. Moreover, the proposed gradient-boosting architecture offers the flexibility to accommodate variable tree counts specific to each patient, to trade the predictive accuracy with energy. This patient-specific and energy-quality scalable classifier holds great promise for low-power sensor data classification in biomedical applications

    Decoding Kinematics from Human Parietal Cortex using Neural Networks

    No full text
    Brain-machine interfaces have shown promising results in providing control over assistive devices for paralyzed patients. In this work we describe a BMI system using electrodes implanted in the parietal lobe of a tetraplegic subject. Neural data used for the decoding was recorded in five 3-minute blocks during the same session. Within each block, the subject uses motor imagery to control a cursor in a 2D center-out task. We compare performance for four different algorithms: Kalman filter, a two-layer Deep Neural Network (DNN), a Recurrent Neural Network (RNN) with SimpleRNN unit cell (SimpleRNN), and a RNN with Long-Short-Term Memory (LSTM) unit cell. The decoders achieved Pearson Correlation Coefficients (ρ) of 0.48, 0.39, 0.77 and 0.75, respectively, in the Y-coordinate, and 0.24, 0.20, 0.46 and 0.47, respectively, in the X-coordinate
    corecore