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Abstract

We present a new deep multi-state Dynamic Recurrent Neural Network (DRNN)
architecture for Brain Machine Interface (BMI) applications. Our DRNN is used to
predict Cartesian representation of a computer cursor movement kinematics from
open-loop neural data recorded from the posterior parietal cortex (PPC) of a human
subject in a BMI system. We design the algorithm to achieve a reasonable trade-off
between performance and robustness, and we constrain memory usage in favor of
future hardware implementation. We feed the predictions of the network back to
the input to improve prediction performance and robustness. We apply a scheduled
sampling approach to the model in order to solve a statistical distribution mismatch
between the ground truth and predictions. Additionally, we configure a small
DRNN to operate with a short history of input, reducing the required buffering of
input data and number of memory accesses. This configuration lowers the expected
power consumption in a neural network accelerator. Operating on wavelet-based
neural features, we show that the average performance of DRNN surpasses other
state-of-the-art methods in the literature on both single- and multi-day data recorded
over 43 days. Results show that multi-state DRNN has the potential to model the
nonlinear relationships between the neural data and kinematics for robust BMIs.

1 Introduction

Brain-machine interfaces (BMIs) can help spinal cord injury (SCI) patients by decoding neural
activity into useful control signals for guiding robotic limbs, computer cursors, or other assistive
devices [1]. BMI in its most basic form maps neural signals into movement control signals and then
closes the loop to enable direct neural control of movements. Such systems have shown promise in
helping SCI patients. However, improving performance and robustness of these systems remains
challenging. Even for simple movements, such as moving a computer cursor to a target on a computer
screen, decoding performance can be highly variable over time. Furthermore, most BMI systems
currently run on high-power computer systems. Clinical translation of these systems will require
decoders that can adapt to changing neural conditions and which operate efficiently enough to run on
mobile, even implantable, platforms.

Conventionally, linear decoders have been used to find the relationship between kinematics and neural
signals of the motor cortex. For instance, Wu et al. [2] use a linear model to decode the neural activity
of two macaque monkeys. Orsborn et al. [3] apply a Kalman filter, updating the model on batches of
neural data of an adult monkey, to predict kinematics in a center-out task. Gilja et al. [4] propose
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a Kalman Filter to predict hand movement velocities of a monkey in a center-out task. However,
all of these algorithms can only predict piecewise linear relationships between the neural data and
kinematics. Moreover, because of nonstationarity and low signal-to-noise ratio (SNR) in the neural
data, linear decoders need to be regularly re-calibrated [2].

Recently, nonlinear machine learning algorithms have shown promise in attaining high performance
and robustness in BMIs. For instance, Wessberg et al. [5] apply a fully-connected neural network to
neural data recorded from a monkey. Shpigelman et al. [6] show that a Gaussian kernel outperforms
a linear kernel in a Kernel Auto-Regressive Moving Average (KARMA) algorithm when decoding
3D kinematics from macaque neural activity. Sussillo et al. [7] apply a large FORCE Dynamic
Recurrent Neural Network (F-DRNN) on neural data recorded from the primary motor cortex in
two monkeys, and then they test the stability of the model over multiple days [8]. These nonlinear
learning-based decoders are more stable and have improved performance compared to prior linear
methods. However, they all have been applied on motor cortex data recorded from a non-human
primate. Moreover, almost all of these decoders have been tested by using neural firing rates as input,
which are not stable over long periods [2]. Recent work has demonstrated that neural activity in the
posterior parietal cortex (PPC) can be used to support BMIs [9, 10, 11, 12], although the encoding of
movement kinematics appears to be complex. Therefore, extracting appropriate neural features and
designing a robust decoder that can model this relationship is required.

We propose a new Deep Multi-State Dynamic Recurrent Neural Network (DRNN) decoder to address
the challenges of performance, robustness, and potential hardware implementation. We refer to two
theorems to show the stability, convergence, and potential of DRNNs for approximation of state-space
trajectories (see supplementary material). We train the DRNN by passing a history of input data to it
and feeding the predictions of the system back to the input to improve performance and robustness for
sequential data prediction. Moreover, we apply scheduled sampling to solve the statistical distribution
discrepancy between the ground truth and predictions. By extracting different neural features, we
compare the performance and robustness of the DRNN with the existing methods in the literature
to predict hand movement kinematics from open-loop neural data. The data is recorded from the
PPC of a human subject over 43 days. Finally, we discuss the potential for implementing our DRNN
efficiently in hardware for implantable platforms. To the best of our knowledge, this is the first time
that learning-based decoders have been used on human PPC activity. Our results indicate that the
Deep Multi-State DRNN operating on mid-band wavelet-based neural features has the potential to
model the nonlinear relationships between the neural data and kinematics for robust BMIs.

2 Deep multi-state dynamic recurrent neural network

A DRNN is a nonlinear dynamic system described by a set of differential or difference equations.
It contains both feed-forward and feedback synaptic connections. In addition to the recurrent ar-
chitecture, a nonlinear and dynamic structure enables it to capture time-varying spatiotemporal
relationships in the sequential data. Moreover, because of state feedback, a small recurrent network
can be equivalent to a large feed-forward network. Therefore, a recurrent network will be compu-
tationally efficient, especially for the applications that require hardware implementation [13]. We
define our deep multi-state DRNN at each time step k as below:

sk = Wsssk−1 +Wsrrk−1 +Wsiuk +Wsfzk + bs
rk = tanh(sk)

h
(1)
k = tanh(Wh(1)h(1)h

(1)
k−1 +Wh(1)rrk + bh(1))

h
(i)
k = tanh(Wh(i)h(i)h

(i)
k−1 +Wh(i)h(i−1)h

(i−1)
k + bh(i))

ŷk = Wyh(l)h
(l)
k + by

ŷk = tanh(ŷk), |ŷk| > 1

zk ← ŷk or yk (Scheduled sampling)

(1)

s ∈ RN is the activation variable, and r ∈ RN is the vector of corresponding firing rates. These two
internal states track the first- and zero-order differential features of the system, respectively. Unlike
conventional DRNNs, Wss ∈ RN×N generalizes the dynamic structure of our DRNN by letting the
network learn the matrix relationship between present and past values of s. Wsr ∈ RN×N describes
the relationship between s and r. Wsu ∈ RN×I relates s to the input vector u. zk models the added
prediction feedback in our DRNN. Wsf ∈ RN×M tracks the effect of zk on s. i ∈ {2, ..., l} and
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l is the number of layers, Ni is the number of hidden units in ith layer, h(i) ∈ RNi is the hidden
state of the ith hidden layer, Wh(1)r ∈ RN1×N , Wh(i)h(i) ∈ RNi×Ni , Wh(i)h(i−1) ∈ RNi×Ni−1 ,
Wyh(l) ∈ RM×Nl , bs ∈ RN , bh(i) ∈ RNi are the weights and biases of the network. All the
hyper-parameters are learnable in our DRNN. Although feed-forward neural networks usually require
a deep structure, DRNNs generally need fewer than three layers. Algorithm 1 shows the training
procedure. Inference is performed by using equation 1. Figure 1 shows the schematic of our DRNN
for a two layer network.

During inference, since the ground truth values are unavailable, the feedback, zk, has to be replaced
by the previous network predictions. However, the same approach cannot be applied during training
since the DRNN has not been trained yet and it may cause poor performance of the DRNN. On the
other hand, statistical discrepancies between ground truth and predictions mean that prior ground
truth cannot be passed to the input. Because of this disparity between training and testing, the DRNN
may enter unseen regions of the state-space, leading to mistakes at the beginning of the sequence
prediction process. Therefore, we should find a strategy to start from the ground truth distribution
and move toward the predictions’ distribution slowly as the DRNN learns.

There exist several approaches to address this issue. Beam search generates several target sequences
from the ground truth distribution [14]. However, for continuous state-space models like recurrent
networks, the effective number of generated sequences remains small. SEARN is a batch approach
that trains a new model according to the current policy at each iteration. Then, it applies the new
model on the test set to generate a new policy which is a combination of the previous policy and
the actual system behavior [15]. In our implementation, we apply scheduled sampling which can be
implemented easily in the online case and has shown better performance than others [16].

In scheduled sampling, at the ith epoch of training, the model pseudorandomly decides whether to
feed ground truth (probability pi) or a sample from the predictions’ distribution (probability (1− pi))
back to the network, with probability distribution modeled by P (yk−1|rk−1). When pi = 1, the
algorithm selects the ground truth, and when pi = 0, it works in Always-Sampling mode. Since the
model is not well trained at the beginning of the training process, we adjust these probabilities during
training to allow the model to learn the predictions’ distribution. Among the various scheduling
options for pi [16], we select linear decay, in which pi is ramped down linearly from ps to pf at each
epoch ep for the total number of epochs, epochs:

pi =
pf − ps
epochs

ep+ ps (2)

3 Pre-processing and feature engineering

We evaluate the performance of our DRNN on 12 neural features: High-frequency, Mid-frequency,
and Low-frequency Wavelet features (HWT, MWT, LWT); High-frequency, Mid-frequency, and
Low-frequency Fourier powers (HFT, MFT, LFT); Latent Factor Analysis via Dynamical Systems
(LFADS) features [17]; High-Pass and Low-Pass Filtered (HPF, LPF) data; Threshold Crossings
(TCs); Multi-Unit Activity (MUA); and combined MWT and TCs (MWT + TCs) (Table 1).

To extract wavelet features, we use ’db4’ mother wavelet on 50ms moving windows of the voltage
time series recorded from each channel. Then, the mean of absolute-valued coefficients for each scale
is calculated to generate 11 time series for each channel. HWT is formed from the wavelet scales 1
and 2 (effective frequency range ≥ 3.75KHz). MWT is made from the wavelet scales 3 to 6 (234Hz -
3.75KHz). Finally, LWT shows the activity of scales 7 to 11 as the low frequency scales (≤ 234Hz).

Fourier-based features are extracted by computing the Fourier transform with the sampling frequency
of 30KHz on one-second moving windows for each channel. Then, the band-powers at the same 11
scales of the wavelet features are divided by the total power at the frequency band of 0Hz - 15KHz.

To generate TCs, we threshold bandpass-filtered (250Hz - 5KHz) neural data at -4 times the root-
mean-square (RMS) of the noise in each channel. We do not sort the action potential waveforms [18].
Threshold crossing events were then binned at 50ms intervals.

LFADS is a generalization of variational auto-encoders that can be used to model time-varying aspect
of neural signals. Pandarinath et al. [17] shows that decoding performance improved when using
LFADS to infer smoothed and denoised firing rates. We used LFADS to generate features based on
the trial-by-trial threshold crossings from each center-out task.
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Algorithm 1 Training – DRNN with Feedback
1: Require: epochs, pf , ps
2: for ep = 1 to epochs do
3: pi =

pf−ps
epochsep + ps

4: for i = 1 to number of batches do
5: Require: u, y: Input and ground truth
6: if i = 1 then
7: z = y
8: end if
9: s← N (0, σs), r ← tanh(s)

10: if number of layers = 2 then
11: h← 0
12: end if
13: for k = 2 to batch length do
14: sk = Wsssk−1 +Wsrrk−1

15: +Wsiuk +Wsfzk−1 + bs
16: rk = tanh(sk)
17: if layers = 1 then
18: ŷk = Wyrrk + by
19: else if layers = 2 then
20: hk = tanh(Whhhk−1+Whrrk+bh)
21: ŷk = Wyhhk + by
22: end if
23: if |ŷk| > 1 then
24: ŷk = tanh(ŷk)
25: end if
26: zk ← ŷk or yk (Scheduled Sampling)
27: end for
28: Update weights and biases: BPTT
29: end for
30: end for
31: Until validation loss increases

Figure 1: Deep Multi-State DRNN with
Scheduled Sampling and Feedback.

Table 1: Frequency range of features
Features Frequency Range

HWT, HFT, HPF > 3.75KHz
TCs, LFADS 250Hz - 5KHz

MWT, MFT, BPF 234Hz - 3.75KHz
LWT, LFT, LPF < 234Hz
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Figure 2: Average performance of decoders
operating on MWT over single-day data

To extract HPF, MUA, and LPF features, we apply high-pass, band-pass, and low pass filters to the
broadband data, respectively, by using second-order Chebyshev filters with cut-off frequencies of
234Hz and 3.75KHz. To infer MUA features, we calculate RMS of band-pass filter output. Then,
we average the output signals to generate one feature per 50ms for each channel. Table 1 shows the
frequency range of features.

We smooth all features with a 1s minjerk smoothing kernel. Afterwards, the kinematics and the
features are centered and normalized by the mean and standard deviation of the training data. Then,
to select the most informative features for regression, we use XGBoost, which provides a score that
indicates how useful each feature is in the construction of its boosted decision trees [19, 20]. In our
single-day analysis, we perform Principal Component Analysis (PCA). Figure 3 shows the block
diagram of our BMI system.

Feature
Extraction

Smoothing
Normalization
Centering

Feature 
Selection
XGBoost

PCA
(Single-day
 Analysis)

Center-Out Task

Cursor Position

Figure 3: Architecture of our BMI system. Recorded neural activities of Anterior Intraparietal Sulcus
(AIP), and Broadman’s Area 5 (BA5) are passed to a feature extractor. After pre-processing and
feature selection, the data is passed to the decoder to predict the kinematics in a center-out task.
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4 Experimental Results

We conduct our FDA- and IRB-approved study of a BMI with a 32 year-old tetraplegic (C5-C6) human
research participant. This participant has Utah electrode arrays (NeuroPort, Blackrock Microsystems,
Salt Lake City, UT, USA) implanted in the medial bank of Anterior Intraparietal Sulcus (AIP), and
Broadman’s Area 5 (BA5). In a center-out task, a cursor moves, in two dimensions on a computer
screen, from the center of a computer screen outward to one of eight target points located around
a unit circle. During open-loop training, the participant observes the cursor move under computer
control for 3 minutes. We collected open-loop training data from 66 blocks over 43 days for offline
analysis of the DRNN. Broadband data were sampled at 30,000 samples/sec from the two implanted
electrode arrays (96 channels each). Of the 43 total days, 42 contain 1 to 2 blocks of training data
and 1 day contains 6 blocks, with about 50 trials per block. Moreover, these 43 days include 32, 5, 1,
and 5 days of 2015, 2016, 2017, and 2018, respectively.

Since the predictions and the ground truth should be close in both micro and macro scales, we report
root mean square error (RMSE) and R2 as measures of average point-wise error and the strength
of the linear association between the predicted and the ground truth signals, respectively. Results
reported in the body of the paper are R2 values for Y-axis position. R2 values for X-axis position
and velocities in X and Y directions and RMSE values for all the kinematics are all presented in
supplementary material. All the curves and bar plots are shown by using 95% confidence intervals
and standard deviations, respectively.

The available data is split into train and validation sets for parameter tuning. Parameters are computed
on the training data and applied to the validation data. We perform 10 fold cross-validation by
splitting the training data to 10 sets. Every time, the decoder is trained on 9 sets for different set of
parameters and validated on the last set. We find the set of optimum parameters by using random
search, as it has shown better performance than grid search [21]. Finally, we test the decoder with
optimized parameters on the test set. The performance on all the test sets is averaged to report the
overall performance of the models in both single- and multi-day analysis.

We compare our DRNN with other decoders, ranging from linear and historical decoders to nonlinear
and modern techniques. The linear and historical decoders with which we compare ours are the
Linear Model (LM) [2] and Kalman Filter (KF) [3]. The nonlinear and modern techniques with
which we also compare ours include Support Vector Regression (SVR) [22], Gaussian KARMA [6],
tree based algorithms (e.g., XGBoost (XGB) [19, 20], Random Forest (RF) [23], and Decision Tree
(DT) [24]), and neural network based algorithms (e.g., Deep Neural Networks (NN) [5], Recurrent
Neural networks with simple recurrent units (RNN) [25], Long-Short Term Memory units (LSTM)
[26], Gated Recurrent Units (GRU) [27], and F-DRNN [7]). (See supplementary material).

We first present single-day performance of DRNN, which is a common practice in the field [7, 3, 28]
and is applicable when the training data is limited to a single day. Moreover, there are aspects that
differ between single- and multi-day decoding, which have not yet been well characterized (e.g.,
varying sources of signal instability) and remain challenging in neuroscience. Furthermore, single-day
decoding is important before considering multi-day decoding since our implantable hardware will be
developed such that the decoder parameters can be updated at any time.

4.1 Single-day performance

We select the MWT as the input neural feature. The models are trained on the first 90% of a day and
tested on the remaining 10%. Figure 2 shows the average performance of the decoders. History-Less
DRNN (HL-DRNN) uses the neural data at time k and kinematics at time k-1 to make predictions
at time k. As we see, DRNN and HL-DRNN are more stable and have higher average performance.
Figure 4 shows the regression of all the decoders on a sample day. We use only 10% of the single-day
training data in figure 4 (b) to show the stability of the DRNN to the limited amount of single-day
training data. Other single-day analyses, including evaluation of the DRNN by changing the amount
of single-day training data, the history of neural data, and the number of nodes are presented in
supplementary material.

For cross-day analysis, we train the DRNN on a single day and test it on all the other days, and repeat
this scenario for all the days. Figure 26 shows the performance of the DRNN over all the days. This
figure shows that MWT is a more robust feature across single days.
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Figure 4: Regression of different algorithms on test data from the same day 2018-04-23: true target
motion (black) and reconstruction (red).
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Figure 5: Cross-day analysis of the DRNN.

4.2 Multi-day performance

To evaluate the effect of the selected feature on the stability and performance of the DRNN, we
train the DRNN on the data from the first 20 days of 2015 and test it on the consecutive days by
using different features. Figure 6 shows that the DRNN operating on the MWT results in superior
performance compared to the other features. Black vertical lines show the year change.

Then, we evaluate the stability and performance of all the decoders over time. Figure 30 shows
that the overall and the average performance of the DRNN exceeds other decoders. Moreover, the
DRNN shows almost stable performance across 3 years. The drop in the performance of almost all
the decoders is because of the future neural signal variations [10].

To assess the sensitivity of the decoders to the number of training days, we change the number of
training days from 1 to 20 by starting from day 20. Figure 8 shows that the Deep-DRNN with 2
layers and the DRNN have higher performance compared to the other decoders, even by using a small
number of training days. Moreover, figure 8 shows that the performance of the DRNN with 1 layer,
10 nodes and history of 10 is comparable to the Deep-DRNN with 2 layers, 50 and 25 nodes in the
first and second layers, and history of 20. Therefore, a small DRNN with a short history has superior
performance compared to the other decoders.
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Figure 6: The DRNN operating on different features.
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Figure 7: Multi-day performance of the decoders.

To evaluate the effect of re-training the DRNN, we consider four scenarios. First, we train DRNN
on the first 20 days of 2015 and test it on the subsequent days. Second, we re-train a DRNN, which
has been trained on 20 days, with the first 5%, 10%, 50%, and 90% of the subsequent test days.
Third, we re-train the trained DRNN annually with 5%, 10%, 50%, and 90% of the first days of
2016, 2017, and 2018. Finally, we train DRNN only on the first 5% and 90% of the single test day.
Figure 9 shows a general increase in the performance of the DRNN after the network is re-trained.
The differences between the performances of the first three scenarios are small, which means that
the DRNN does not necessarily need to be re-trained to perform well over multiple days. However,
because of instability of the recorded neural data [10], training the DRNN on the first 90% of the test
day in the last scenario results in the highest average performance on the test day.

5 Hardware implementation potential

We are proposing a method that will not only have good performance on single- and multi-day data,
but will also be optimal for hardware implementation. Since it is impractical to require powerful
CPUs and GPUs for everyday usage of a BMI device, we need a device that is easily portable and does
not require communication of the complete signals recorded by electrodes to an external computer
for computation. Doing the computation in an Application Specific Integrated Circuit (ASIC) would
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Figure 8: Effect of number of training days on
the performance of the decoders.
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Figure 9: The DRNN operating in different train-
ing scenarios.

drastically reduce the latency of kinematics inference and eliminate a large power draw for the
gigabytes of neural data that must be transferred otherwise. Thus, we plan to create an ASIC that can
be implanted in the brain to perform inference of kinematics from neural signals. The main bottleneck
in most neural network accelerators is the resources spent on fetching input history and weights from
memory to the Multiplication and Accumulation (MAC) unit [29]. The DRNN will help mitigate
this issue since we require fewer nodes and input history compared to the standard recurrent neural
networks. This eliminates the need for large input history storage and retrieval, reducing latency and
control logic. Furthermore, by using 16-bit fixed point values for the weights and inputs rather than
floating point values, we can reduce the power used by the off-chip memory [29, 30].

6 Discussion

We propose a Deep Multi-State DRNN with scheduled sampling to better model the nonlinearity
between the neural data and kinematics in BMI applications. We show that the added internal
derivative state enables our DRNN to track first order and more complicated patterns in the data.
Moreover, unlike conventional DRNNs, our DRNN learns a matrix that establishes a relationship
between the past and present derivative states. To the best of our knowledge, this is the first
demonstration of applying feedback and scheduled sampling to a DRNN to predict kinematics by
using open-loop neural data recorded from the PPC area of a human subject. Our DRNN has the
potential to be applied to the recorded data from other brain areas as a recurrent network.

To evaluate our DRNN, we analyze single-day, cross-day, and multi-day behavior of the DRNN by
extracting 12 different features. Moreover, we compare the performance and robustness of the DRNN
with other linear and nonlinear decoders over 43 days. Results indicate that our proposed DRNN, as
a nonlinear dynamical model operating on the MWT, is a powerful candidate for a robust BMI.

The focus of this work is to first evaluate different decoders by using open-loop data since the data
presented was recorded from a subject who has completed participation in the clinical trial and has
had the electrodes explanted. However, the principles learned from this analysis will be relevant to
the future subjects with electrodes in the same cortical area.

Future studies will evaluate the DRNN performance in a closed-loop BMI, in which all the decoders
use the brain’s feedback. Next, since we believe that our small DRNN achieves higher efficiency and
uses less memory by reducing the history of the input, number of weights, and therefore memory
accesses, we are planning to implement the DRNN in a field-programmable gate array (FPGA)
system where we can optimize for speed, area, and power usage. Then, we will build an ASIC of the
DRNN for BMI applications. The system implemented must be optimized for real-time processing.
The hardware will involve designing multiply-accumulates with localized memory to reduce the
power consumption associated with memory fetch and memory store.

8

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/710327doi: bioRxiv preprint first posted online Jul. 22, 2019; 

http://dx.doi.org/10.1101/710327


Acknowledgment: We thank Tianqiao and Chrissy (T&C) Chen Institute for Neuroscience at
California Institute of Technology (Caltech) for supporting this IRB approved research.

References
[1] Sam Musallam, BD Corneil, Bradley Greger, Hans Scherberger, and Richard A. Andersen.

Cognitive control signals for neural prosthetics. Science, 305(5681):258–262, 2004.

[2] Wei Wu and Nicholas G. Hatsopoulos. Real-time decoding of nonstationary neural activity in
motor cortex. IEEE Transaction on Neural Systems and Rehabilitation Engineering, 16(3):213–
222, 2008.

[3] Amy L. Orsborn, Siddharth Dangi, Helene G. Moorman, and Jose M. Carmena. Closed-loop
decoder adaptation on intermediate time-scales facilitates rapid bmi performance improvements
independent of decoder initialization conditions. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 20(4):468–477, 2012.

[4] Vikash Gilja, Paul Nuyujukian, Cindy A. Chestek, John P. Cunningham, Byron M. Yu, Joline M.
Fan, Mark M. Churchland, Matthew T. Kaufman, Jonathan C. Kao, Stephen I. Ryu, and
Krishna V. Shenoy. A high-performance neural prosthesis enabled by control algorithm design.
Nature Neuroscience, 15(12):1752–1757, 2012.

[5] Johan Wessberg, Christopher R. Stambaugh, Jerald D. Kralik, Pamela D. Beck, Mark Laubach,
John K. Chapin, Jung Kim, S. James Biggs, Mandayam A. Srinivasan, and Miguel A. L.
Nicolelis. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates.
Nature, 408:361–365, 2000.

[6] Lavi Shpigelman, Hagai Lalazar, and Eilon Vaadia. Kernel-arma for hand tracking and brain-
machine interfacing during 3d motor control. Advances in Neural Information Processing
Systems, 21, 2009.

[7] David Sussillo, Paul Nuyujukian, Joline M. Fan, Jonathan C. Kao, Sergey D. Stavisky,
Stephen Ryu, and Krishna Shenoy. A recurrent neural network for closed-loop intracorti-
cal brain–machine interface decoders. Journal of Neural Engineering, 9(2), 2012.

[8] David Sussillo, Sergey D. Stavisky, Jonathan C. Kao, Stephen I. Ryu, and Krishna V. Shenoy.
Making brain–machine interfaces robust to future neural variability. Nature communications,
7(13749), 2016.

[9] Richard A. Anderson, Spencer Kellis, Christian Klaes, and Tyson Aflalo. Toward more versatile
and intuitive cortical brain machine interfaces. Current Biology, 24(18):R885–R897, 2014.

[10] Tyson Aflalo, Spencer Kellis, Christian Klaes, Brian Lee, Ying Shi, Kelsie Pejsa, Kathleen
Shanfield, Stephanie Hayes-Jackson, Mindy Aisen, Christi Heck, Charles Liu, and Richard A.
Anderson. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human.
Science, 348(6237):906–910, 2015.

[11] Christian Klaes, Spencer Kellis, Tyson Aflalo, Brian Lee, Kelsie Pejsa, Kathleen Shanfield,
Stephanie Hayes-Jackson, Mindy Aisen, Christi Heck, Charles Liu, and Richard A. Andersen.
Hand shape representations in the human posterior parietal cortex. Journal of Neuroscience,
35(46):15466–15476, 2015.

[12] Carey Y. Zhang, Tyson Aflalo, Boris Revechkis, Emily R. Rosario, Debra Ouellette, Nader
Pouratian, and Richard A. Andersen. Partially mixed selectivity in human posterior parietal
association cortex. Neuron, 95(3):697–708, 2017.

[13] Liang Jin, P.N. Nikiforuk, and M.M. Gupta. Approximation of discrete-time state-space
trajectories using dynamic recurrent neural networks. IEEE transaction on automatic control,
40(7):1266–‘1270, 1995.

[14] Peng S. Ow and Thomas E. Morton. Filtered beam search in scheduling. International Journal
for Production Research, 26(1):35–62, 1988.

9

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/710327doi: bioRxiv preprint first posted online Jul. 22, 2019; 

http://dx.doi.org/10.1101/710327


[15] Hal Daume, John Langford, and Daniel Marcu. Search-based structured prediction. Machine
Learning Journal, 2009.

[16] Samy Bengio, Oriol Vinayls, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for
sequence prediction with recurrent neural networks. Neural Information Processing Systems
(NIPS), 2015.

[17] Chethan Pandarinath, Daniel J. O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D. Stavisky,
Jonathan C. Kao, Eric M. Trautmann, Matthew T. Kaufman, Stephen I. Ryu, Leigh R. Hochberg,
Jaimie M. Henderson, Krishna V. Shenoy, L. F. Abbott, and David Sussillo. Inferring single-trial
neural population dynamics using sequential auto-encoders. Nature Methods, 15:805—-815,
2018.

[18] Christie BP, Tat DM, Irwin ZT, Gilja V, Nuyujukian P, Foster JD, Ryu SI, Shenoy KV, Thompson
DE, and Chestek CA. Comparison of spike sorting and thresholding of voltage waveforms for
intracortical brain-machine interface performance. Journal of Neural Engineering, 12(1):1741—
-2560, 2015.

[19] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. arXiv, 2016.

[20] Mahsa Shoaran, Benyamin A. Haghi, Milad Taghavi, Masoud Farivar, and Azita Emami.
Energy-efficient classification for resource-constrained biomedical applications. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 8(4):693—-707, 2018.

[21] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal
of Machine Learning Research, 13:281–305, 2012.

[22] Debasish Basak, Srimanta Pal, and Dipak Chandra Patranabis. Support vector regression.
Neural Information Processing, 11(10):203–224, 2007.

[23] Leo Breiman. Random forests. Journal of Machine Learning, 45(1):5—-32, 2001.

[24] J Ross Quinlan. Induction of decision trees. Journal of Machine Learning, 1(1):81—-106,
1986.

[25] Danilo P. Mandic and Jonathan A. Chambers. Recurrent Neural Networks for Prediction:
Learning Algorithms, Architectures and Stability. John Wiley & Sons, Inc., New York, NY,
USA, 2001.

[26] Felix A. Gers, Jurgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction
with lstm. Neural Computation, 12(10):2451–2471, 2000.

[27] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv, 2014.

[28] Suraj Gowda, Amy L. Orsborn, Simon A. Overduin, Helene G. Moorman, and Jose M. Carmena.
Designing dynamical properties of brain-machine interfaces to optimize task-specific perfor-
mance. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(5):911—-920,
2014.

[29] Paul N. Whatmough, Sae Kyu Lee, David Brooks, and Gu-Yeon Wei. Dnn engine: A 28-nm
timing-error tolerant sparse deep neural network processor for iot applications. IEEE Journal of
Solid-State Circuits, 53(9):2722—-920, 2018.

[30] Mohit Shah, Sairam Arunachalam, Jingcheng Wang, David Blaauw, Dennis Sylvester, Hun Seok
Kim, Jae sun Seo, and Chaitali Chakrabarti. A fixed-point neural network architecture for
speech applications on resource constrained hardware. Journal of Signal Processing Systems,
90(9):725—-741, 2018.

[31] Lianfang Tian and Curtis Collins. A dynamic recurrent neural network-based controller for a
rigid-flexible manipulator system. Mechatronics, 14(5):471–490, 2004.

[32] Francois Chollet. Keras: The python deep learning library, 2015.

10

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/710327doi: bioRxiv preprint first posted online Jul. 22, 2019; 

http://dx.doi.org/10.1101/710327


[33] Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vander-
plas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouard
Duchesnay. Scikit-learn: Machine learning in python. Journal of Machine Learning Research,
12:2825–2830, 2012.

[34] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. Neural Info Processing Systems, 31, 2017.

[35] Simon O. Haykin. Adaptive Filter Theory. Prentice Hall, Englewood Cliffs, NJ, USA, 2001.

[36] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv, 2017.

11

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/710327doi: bioRxiv preprint first posted online Jul. 22, 2019; 

http://dx.doi.org/10.1101/710327


A Dynamic recurrent neural network

A general structure of a discrete-time DRNN is given by the following expressions:{
sk = −ask−1 + f(Wss, sk−1,Wsu, uk, bs)

ŷk = Wyssk + by
(3)

where s ∈ RN , ŷ ∈ RM , and u ∈ RI are the state, prediction, and the input vectors, respectively,
Wss ∈ RN×N , Wsu ∈ RN×I , and Wys ∈ RM×N are the weight matrices, a ∈ [−1, 1] is a constant
controlling state decaying, bs ∈ RN , and by ∈ RM are the biases, and f : RN × RI → RN is a
vector-valued function. [13]

B Approximation of state-space trajectories

Theorem 2.1 verifies the approximation capability of DRNNs for the discrete-time, and non-linear
systems.

Theorem B.1 Let S ⊂ RM and U ⊂ RI be open sets, Ds ⊂ S and Du ⊂ U be compact sets, and
f : S × U → RM be a continuous vector-valued function which defines the following non-linear
system

zk = f(zk−1, uk), z ∈ RM , u ∈ RI (4)
with an initial value z0 ∈ Ds. Then for an arbitrary number ε > 0, and an integer 0 < L <∞, there
exist an integer N and a DRNN of the form (1) with an appropriate initial state s0 such that for any
bounded input u : R+ = [0,+∞)→ Du

max
0≤k≤L

||zk − sk|| < ε (5)

Proof: See [13]

C Local stability and convergence of DRNNs

Learning rate (γ) plays the main role in stability and convergence of neural networks. By using
Lyapunov theorem, we define the range of the learning rate to guarantee the real-time convergence of
DRNNs and the stability of the system during the whole control process.

Theorem C.1 If an input series of internal dynamic neural network can be activated in the whole
control process subject to uk ∈ RI , then learning rate satisfies

0 < γ <
2

r2
(6)

where r = ∂e
∂W , e = ŷ−y is the difference of prediction and ground-truth, and W is the concatenation

of connection weights of each network unit. Then (4) ensures the system is exponentially convergent.

Proof: See [31]

D Description of the other methods

Since all of these methods are well-known in the literature, we only provide a brief explanation
of each here. We explain the F-DRNN with details since our network is a generalization of the
F-DRNN, with all the parameters to be learnable. For more information, please take a look at the
main references. We use Pytorch, Keras, Scikit-learn and Python 2.7 for simulations. [32, 33, 34].

D.1 Latent Factor Analysis via Dynamical Systems (LFADS) [17]

Latent Factor Analysis via Dynamical Systems (LFADS) works by modeling a dynamical system
that can generate neural data. The algorithm models the nonlinear vector valued function F that
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can infer firing rates using neural data input. The LFADS system is a generalization of variational
auto-encoders that can be used with sequences of data, to model the time-varying aspect of neural
signals. We use observed spikes as the input to the encoder RNN. We bin our spikes in 50 ms bins
and then separate each center-out task into a separate trial. We use the inferred firing rates that are the
result of applying a nonlinearity and affine transformation on the factors output from the generator
RNN. A dimensionality of 64 was chosen for the latent variables that are the controller outputs and
the factors.

D.2 FORCE Dynamic Recurrent Neural Network (F-DRNN) [7]

F-DRNN is defined as below:
τ dstdt = −st−1 + gWsrrt−1 + βWsiut +Wsf ŷt−1 + bs
rt = tanh(st)

ŷt = Wyrrt + by

(7)

s ∈ RN is the activation variable, and r ∈ RN is the vector of corresponding firing rates. These
states track the first and zero order differential features of the system, respectively.

Wsr ∈ RN×N describes the relationship between s and r. Wsu ∈ RN×I relates s to the input vector
u. ŷ models the feedback in the network. Wsf ∈ RN×M tracks the effect of ŷ on s. Wyr ∈ RM×N

indicates the linear transformation between the firing rates r and the prediction ŷ. τ , g, and β are the
neuronal time constant, scaling of internal connections, and scaling of inputs, respectively.

To discretize the first equation of the continuous F-DRNN, we integrate the first expression of the
system by using the Euler method at a time step of ∆t. Then, the equations of the network become:

sk = (1− c)sk−1 + cgWsrrk−1 + cβWsiuk + cWsf ŷk−1 + cbs
rk = tanh(sk)

ŷk = Wyrrk + by

(8)

where c = ∆t
τ

In F-DRNN, we select Wsr, Wsi, and Wsf to be randomly sparse, i.e., only n = 0.1N , i = 0.1I ,
and m = 0.5M randomly chosen elements are non-zero in each of their rows, respectively. The non-
zero elements of the matrices are drawn independently from zero-mean Gaussian distributions with
variances 1

n , 1
i , and 1

m , respectively. s0 and the constant bias bs are drawn from zero-mean Gaussian
distributions with the standard deviations σs and σb, respectively. Elements of Wyr are initialized
to zero. Since the only matrix learned in the network is the output weight Wyr and all the other
weights are fixed, we name this network as FORCE DRNN [7]. Therefore, the network dynamics are
controlled by the matrix gWsr + WsfWyr. To update Wyr, we use recursive least-squares (RLS)
algorithm [35]. The error signal is defined by:

ek = ŷk − yk (9)

By defining P as the inverse correlation matrix, the equation for updating P is as below:

Pk = Pk−∆k −
Pk−∆krkr

T
k Pk−∆k

1 + rTk Pk−∆krk
, P0 = γI (10)

Where γ and ∆k indicate learning rate and learning step size (batch size), respectively. The modifica-
tion to the mth column of Wyr by using the mth element of the error is:

W
yr

(m)
k

= W (m)
yrk−∆k

− e(m)
k Pkrk (11)

D.3 Deep Neural Network [5]

In a fully connected neural network, there are multiple layers: an input layer, output layer, and
any number of hidden layers with multiple nodes in each hidden layer. The output of each node in
each layer is connected to the input of each node in the consecutive layer. Each node performs of∑N
i=1Wixi, where xi is each input from the nodes in the previous layer and Wi is the weight of the

connection between the node in the previous layer and this current node. The output is then converted
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to a normalized range using a function such as tanh to get values between -1 and 1. Wi is trained
through a process called back-propagation that trains the network on the inputs and finds the error,
iteratively minimizing the loss function until the error stays relatively constant.

Since over-fitting is possible, which can cause issues where the trained model cannot later generalize
to the separate test data, we can try to perform early stopping during validation such that a limited
number of epochs (round of training with all inputs) are used for training before the weights are
finalized. The following number of epochs are considered in our work: 5, 10, 20, 30, 50, 75, 100,
125, 150, 200, 300, 400, 500, 600. In addition, we consider different network structures with up to 3
layers, where each set consists of 1, 2, or 3 hidden layers with the given number of nodes in each
layer: (100), (100, 100), (100, 10), (20, 20), (20, 20, 20), (40, 40), (40, 10), (40, 40, 40), (10, 10, 10).

D.4 Support Vector Regression [22]

Support vector regression (SVR) is the continuous form of support vector machines where the
generalized error is minimized, given by the function:

ŷ =
N∑
i=1

(α∗
i − αi)k(ui, u) + b (12)

and αi are Lagrange multipliers and k is a kernel function, where we use the radial basis function
kernel in this paper. The Lagrange multipliers are found by minimizing a regularized risk function:

1

2
||w||2 + C

l∑
i=1

Lε(y) (13)

We vary the penalty portion of the error term, C, as part of the validation process to find the optimum
parameter.

D.5 Linear Model [2]

The linear model uses a standard linear regression model where we can predict kinematics (ŷ) from
the neural data (u) by using:

ŷ = a+

N∑
i=1

Wiui (14)

We find the weights Wi and the bias term a through a least squares error optimization to minimize
mean squared error between the model’s predictions and true values during training. The parameters
are then used to predict new kinematics data given neural data.

D.6 KARMA [6]

The Kernel Auto-Regressive Moving Average (KARMA) model can also be used for prediction.
ARMA (non-kernelized) uses the following model, where ŷik is the ith component of the kinematics
data at time step k and ujs is the jth component of the neural data at time step s:

ŷik =
r∑
l=1

Alŷ
i
k−1 +

s∑
l=1

Blu
i
k−l+1 + eik (15)

Thus, we are performing a weighted average of the past r time steps of kinematics data and the
past s time steps of neural data (as well as the current one) with a residual error term, e. Then, the
difference in KARMA is that we use the kernel method to translate data to the radial basis function
dimension. We use a standard SVR solver for inference, by just concatenating the different histories
for the kinematics and neural data. When training, we use the known kinematics values for the history.
However, when predicting new kimatics data, we use old predictions for the history portion of the
new predictions.
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D.7 Kalman Filter [3]

The Kalman Filter combines the idea that kinematics are a function of neural firings as well as the
idea that neural activity is a function of movements, or the kinematics. This can be represented by
two equations: {

ŷk+1 = Akŷk + wk
uk = Hkŷk + qk

(16)

These represent how the system evolves over time as well as how neural activity is generated by
system’s behavior. The matrices A, H , Q, and W can be found through a training process (where
q ∼ N (0, Q) and w ∼ N (0,W ). Using properties of the conditional probabilities of kinematics and
neural data, we get a closed form solution for maximizing the joint probability p(YM , UM ). Using
the physical properties of the problem, we get matrix A to be of the form:

A =

1 0 ∆t 0
0 1 0 ∆t
0 0 a b
0 0 c d

 (17)

We define Av as:

Av =

[
a b
c d

]
= V2V

T
1 (V1V

T
1 )−1 (18)

V1 consists of the velocity kinematics points except for the last time step, V2 consists of the velocity
kinematics points except for the first time step, and dt is the time step size used, 50 ms in our case.

Furthermore W is a zero matrix with the matrix Wv = 1
N−1 (V2 −AV1)(V2 −AV1)T in the bottom

right corner. H and Q are given by:{
H = UTY (Y Y T )−1

Q = 1
N (U −HY )(U −HY )−1 (19)

Then, we can use the update equations:
ŷ−k = Aŷk−1

P−
k = APk−1A

T +W

ŷk = ŷ−k +Kk(uk −Hŷ−k )

Pk = (1−KkH)P−
k

(20)

Here, P is the covariance matrix of the kinematics. Kk, the Kalman filter gain is given by:

Kk = P−
k H

T (HP−
k H

T +Q)−1 (21)

D.8 Recurrent Neural Network (RNN) [25]

A vanilla recurrent neural network with N hidden nodes for regression is defined as:{
rk = tanh(Wrrrk−1 +Wriuk + br)

ŷk = Wyrrk + by
(22)

where r ∈ RN , ŷ ∈ RM , and u ∈ RI are the state, prediction, and input vectors, respectively,
Wrr ∈ RN×N , Wru ∈ RN×I , and Wyr ∈ RM×N are the weight matrices, br ∈ RN and by ∈ RM
are the biases.

Because of the internal state r which acts as a history unit, the RNN is capable of remembering and
extracting short term temporal dependencies in sequential data. Therefore, to find the spatio-temporal
relationship between the recorded neural data and kinematics as sequential data, we train an RNN
with optimal parameters and compare its performance with the DRNN.
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D.9 Long-Short Term Memory (LSTM) [26]

It is well-known that Simple RNN units cannot remember long term dependencies in sequential data
because of the vanishing gradients problem. Another version of RNNs that is widely used in the
literature are RNNs with Long-Short Term Memory (LSTM) units. By denoting ◦ as Hadamard
product, the LSTM is defined as:

fk = σ(Wfuuk +Wfrrk−1 + bf )

ik = σ(Wiuuk +Wirrk−1 + bi)

ok = σ(Wouuk +Worrk−1 + bo)

cu = tanh(Wcuuk +Wcrrk−1 + bc)

ck = fk ◦ ck−1 + ik ◦ cu
rk = ok ◦ tanh(ck)

ŷk = Wyrrk + by

(23)

rk is the hidden state as in Simple RNN, cu is the output from the cell update activation function, ck
is the LSTM cell’s internal state, fk, ik, ok are the output matrices from the respective forget, input,
and output activation functions, which act as the LSTM’s gates, W and b represent the weights and
biases, and σ is the sigmoid function.

D.10 Gated Recurrent Units (GRU) [27]

A simpler version of the RNN cells than LSTM that can extract long term dependencies in sequential
data are Gated Recurrent Units (GRU). The GRU formulation is as below:

zk = σ(Wzuuk +Wzrrk−1 + bz)

hk = σ(Whuuk +Whrrk−1 + bh)

ru = tanh(Wruuk +Wrr(hk ◦ rk−1) + br)

rk = (1− zk) ◦ rk−1 + zk ◦ ru
ŷk = Wyrrk + by

(24)

Here, h is a reset gate, and z is an update gate. The reset gate determines how to combine the previous
memory and the new input. The network decides how much of the previous memory should be kept
by using the update gate. Vanilla RNN is the case that we set the update gate to all 0’s and the reset
to all 1’s.

D.11 XGBoost (XGB) [19, 20]

XGBoost is one kind of boosting methods which uses ensemble of decision trees. Among 29
competitions winning solutions published at Kaggle during 2015, 17 solutions used XGBoost [19].
For a given data set with n examples and m features D = {(xi, yi)}, |D| = n, xi ∈ Rm, yi ∈ R, a
tree ensemble model uses K additive functions to predict the output:

ŷi = ρ(xi) =
K∑
k=1

fk(xi), fk ∈ F (25)

where F = {f(x) = wq(x)}, (q : Rm → T,w ∈ RT ) is the space of regression trees, q represents
the structure of each tree, T is the number of leaves, and each fk corresponds to a tree structure q and
leaf weights w.

D.12 Random Forests and Decision Trees [23, 24]

Random Forests are one kind of bagging tree based algorithms that make the prediction by routing a
feature sample through the tree to the leaf randomly. The training process will be done independently
for each tree. The forest final prediction is the average of the predictions of all the trees. Decision
trees are a special case of random forests with one tree.
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E DRNN training: back propagation through time (BPTT)

The squared loss function is defined as below:

J =
1

2
(ŷ − y)2 (26)

Therfore, the average loss at time step k is:

Jk =
1

k

k∑
t=1

Jt (27)

Training the network is usually accomplished by applying a mini-batch optimization method to search
for a set of parameters that maximize the log-likelihood function:

θ∗ = arg max
θ

∑
(xi,yi)

log P (yi|xi; θ) (28)

(xi, yi) is a training pair, P is the probability distribution of the data, and θ∗ is the optimum set of
parameters.

To update the model’s parameters, we perform back propagation through time (BPTT) by using Adam
optimization algorithm [36] (Supplementary materials). We need to find the following derivatives:

∂Jk
∂Wss

,
∂Jk
∂Wsr

,
∂Jk
∂Wsi

,
∂Jk
∂Wsf

,
∂Jk
∂bs

,
∂Jk
∂Wyr

,
∂Jk
∂by

Since the partial derivative is a linear operator, we have:

∂Jk
∂θ

=
1

k

k∑
t=1

∂Jt
∂θ

(29)

where θ indicates weights or biases.
∂Jt
∂Wyr

and ∂Jk
∂by

depend only on the variables at the present time. Therefore, by using the chain rule,
we get

∂Jt
∂θ

=
∂Jk
∂ŷk

∂ŷk
∂θ

(30)

where θ ∈ {Wyr, by}
The derivatives of J with respect to all the other parameters depend not only on the present time
variables, but also they depend on the history of the variables from the beginning of the update time
(batch size). Therefore, we have:

∂Jt
∂θ

=
t∑
i=0

∂Jt
∂rt

∂rt
∂ri

∂ri
∂si

∂si
∂θ

(31)

where θ ∈ {Wss,Wsr,Wsi,Wsf , bs}
BPTT has been implemented by using Pytorch automatic differentiation package [34].

F Adam optimization method [36]

Adam optimization algorithm is widely used for parameter optimization in neural network based
learning methods. The algorithm is as below:

G Performance evaluation measures

As a pre-processing step before passing the neural data to the decoders, we use XGBoost feature
importance score to select stable channels across the training days. The more a feature is used to

17

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/710327doi: bioRxiv preprint first posted online Jul. 22, 2019; 

http://dx.doi.org/10.1101/710327


Algorithm 2 Adam Stochastic Optimization Algorithm
Require: γ: Learning rate
Require: β1, β2 ∈ [0, 1): Exponential decay rates for moment estimates
Require: J(θ): Loss function with parameter θ
Require θ0: Initial parameter vector, m0 ← 0 (Initialize 1st moment vector), v0 ← 0 (Initialize 2nd moment
vector), t← 0 (Initialize timestep)
while θt not converged do

t← t+ 1
gt ← ∇θJt(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
mt ← β1mt−1 + (1− β1)gt (Update biased 1st moment estimate)
vt ← β2vt−1 + (1− β2)g2t (Update biased 2nd raw moment estimate)
m̂t ← mt

(1−βt
1)

(Compute bias-corrected 1st moment estimate)

v̂t ← vt
(1−βt

2)
(Compute bias-corrected 2nd raw moment estimate)

θt ← θt−1 − γ m̂t

(
√
v̂t+ε)

(Update parameters)
end while
return θt (Resulting parameters)

make key decisions with XGBoost decision trees, the higher its relative importance. This importance
is calculated explicitly for each feature in the dataset, allowing features to be ranked and compared
to each other. Importance is calculated for a single decision tree by the amount that each feature
split point improves the performance measure, weighted by the number of observations the node is
responsible for. The importances are then averaged across all of the the XGBoost decision trees.

To compare the decoders’ predictions, we report Root Mean Square Error (RMSE), and R2. The
RMSE finds the average point-wise error between the predicted and ground-truth signals as below:

RMSE =

√√√√ 1

K

K∑
i=1

(yi − ŷi)2 (32)

where K is the total number of data points, yi and ŷi are the ith ground-truth and prediction,
respectively. The smaller the RMSE is, the better the performance.

The R2 measures the strength of the linear association between the predicted and the ground-truth
signals as below:

R2 = (

∑
i(yi − ȳ)(ŷi − ¯̂y)√∑

i(yi − ȳ)2

√∑
i(ŷi − ¯̂y)2

)2 (33)

that is a real number varies from 0 to 1. The larger the R2 is, the better the performance.

H Experimental results for other kinematics

Table 2 shows the parameters of all the decoders for single- and multi-day analysis. The average
performance of a small DRNN with a short history surpasses the other decoders’ in terms of R2 and
RMSE. Even the HL-DRNN’s results are comparable with the other larger recurrent models with
longer histories. Figures 10, 11, and 12 show the single-day predictions of all the decoders on a
sample
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Table 2: Optimum parameters for different algorithms (Only differences are reported for multi-day)

MODEL SINGLE-DAY MULTI-DAY
SVR C : 0.1, Kernel: RBF C : 1

KARMA r : 0, s : 20, C : 0.1, Kernel: Gaussian r : 0, s : 2, C : 0.1
XGB number of trees: 15, maximum depth: 8 number of trees: 20
RF number of trees: 20, maximum depth: 10 number of trees: 40
DT maximum depth: 10 -
NN Layer: 2, Optimizer: Adam, Nodes: (40, 10), Batch size: 128

Batch size: 64, dropout: 0, epoch: 118 dropout: 0.25
RNN Optimizer: RMSprop, Nodes: 25, Batch size: 64 Nodes: 100, Batch size: 128

History: 20, dropout: 0.2, epoch: 19 History: 40, epoch: 50
LSTM Optimizer: RMSprop, Nodes: 50, Batch size: 64 Nodels 75, Batch size: 128

History: 40, dropout: 0.35, epoch: 17 epoch: 50
GRU Optimizer: RMSprop, Nodes: 75, Batch size: 32, Batch size: 64

History: 40, dropout: 0.3
FDRNN g : 1, β : 0.5, Nodes: 1200, Batch size: 10 g: 0.5, Nodes: 1500

σb: 0.025, σs: 0.01, τ : 250 ms, epoch: 10
DRNN Layer: 1, Optimizer: Adam, Nodes: 5, ps: 0.25, pf : 0 Nodes: 10, ps: 0.5

Batch size: 16, History: 10, dropout: 0.25, epoch: 2 Batch size: 64, epoch: 5

day for Vy, X, and Vx, respectively. Figures 13 and 14 show the average performance of all the
decoders.

We do three more single-day analyses. First, we evaluate the effect of neural data history on the
recurrent networks. Figures 15 and 16 show the performance of recurrent decoders versus history of
neural data. The performance of other recurrent decoders drops, however, the DRNN’s performance
is stable. Second, we evaluate the performance of the recurrent networks with different number
of internal hidden nodes. Figures 17 and 18 show the performance of these decoders versus the
number of hidden nodes. The DRNN’s performance has little changes when we add more nodes to
the network. Moreover, it still performs superior to the other recurrent decoders. Third, we assess the
stability of the recurrent networks to the amount of the single day’s training data. Figures 19 and
20 show that the DRNN’s performance is still better than the others. Moreover, it implies that the
DRNN is a stable decoder and it works well even with less than 10% single-day training data.

Since we have only presented the R2 values for Y-axis position in the body of the paper, we first
present the corresponding RMSE values in figures 21, 22, 23, 24, and 25. These figures evaluate the
average cross-day performance of the decoders by operating on different features, average multi-day
performance of the DRNN on different features, average multi-day performance of the decoders
operating on the MWT, effect of the used number of training days on the average performance of
the decoders, and the effect of re-training on the DRNN’s long term stability and performance in
different scenarios, respectively.

Subsequent figures present the equivalent R2 and RMSE values for all the other kinematics. Figures
26 and 27 show the cross-day performance of the decoders. Figures 28 and 29 show the multi-day
performance of the DRNN on the different features. Figures 30 and 31 show the performance of all
the decoders operating on the MWT. Figures 24, 32, 34, 36, 38, 40, and 42 show the effect of number
of training days on the performance of all the decoders. Finally, figures 25, 33, 35, 37, 39, 41, and 43
show the effect of re-training on the DRNN’s long term stability and performance in the different
scenarios.
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Figure 10: Vy velocity regression of different algorithms on test data from the same day 2018-04-23:
true target motion (black) and reconstruction (red).
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Figure 11: X position regression of different algorithms on test data from the same day 2018-04-23:
true target motion (black) and reconstruction (red).
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Figure 12: Vx velocity regression of different algorithms on test data from the same day 2018-04-23:
true target motion (black) and reconstruction (red).
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Figure 13: Average performance of the decoders operating on the MWT over single-day data.
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Figure 14: Average RMSE of decoders operating on the MWT over single-day data.
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Figure 15: Performance of the recurrent networks versus the amount of single-day history of neural
data.
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Figure 16: RMSE of the recurrent networks versus the amount of single-day history of neural data.
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Figure 17: Performance of the recurrent networks on single-day data versus number of internal hidden
nodes of the networks.
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Figure 18: RMSE of the recurrent networks on single-day data versus number of internal hidden
nodes of the networks.
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Figure 19: The effect of the amount of single-day training data on the performance of the recurrent
networks.
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Figure 20: The effect of the amount of single-day training data on the performance of the recurrent
networks.
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Figure 21: Cross-day analysis of the DRNN.

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Consequent Days

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

RM
SE

HWT
MWT
LWT
HFT

MFT
LFT
TCs
LFADS

MWT + TCs
LPF
MUA
HPF

(a) Y

LFADS
HFT

HWT
HPFTCsLFT

MFT
MUALPF

LWT

MWT + TCs
MWT

0.24

0.29

0.34

0.39

0.44

0.49

0.54

0.59

0.64

0.69

Av
er

ag
e 

RM
SE

(b) Y

Figure 22: The DRNN operating on different features.
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Figure 23: Multi-day performance of the decoders.
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Figure 24: Effect of number of training days on
the performance of decoders - Y.
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Figure 25: The DRNN operating in different
training scenarios - Y.
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Figure 26: Cross-day analysis of the DRNN.
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Figure 27: Cross-day analysis of the DRNN.
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Figure 28: The DRNN operating on different features.
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Figure 29: The DRNN operating on different features.
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Figure 30: Multi-day performance of the decoders.
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Figure 31: Multi-day performance of the decoders.
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Figure 32: Effect of number of training
days on the performance of decoders - Vy.
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Figure 33: The DRNN operating in differ-
ent training scenarios - Vy.
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Figure 34: Effect of number of training
days on the performance of decoders - Vy.
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Figure 35: The DRNN operating in differ-
ent training scenarios - Vy.
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Figure 36: Effect of number of training
days on the performance of decoders - X.
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Figure 37: The DRNN operating in differ-
ent training scenarios - X.

37

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/710327doi: bioRxiv preprint first posted online Jul. 22, 2019; 

http://dx.doi.org/10.1101/710327


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Training Days

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

RM
SE

Deep-DRNN
DRNN
HL-DRNN
F-DRNN
LSTM
GRU
RNN
XGB

RF
DT
SVR
NN
LM
KF
KARMA

Figure 38: Effect of number of training
days on the performance of decoders - X.
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Figure 39: The DRNN operating in differ-
ent training scenarios - X.
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Figure 40: Effect of number of training
days on the performance of decoders - Vx.
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Figure 41: The DRNN operating in differ-
ent training scenarios - Vx.
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Figure 42: Effect of number of training
days on the performance of decoders - Vx.
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Figure 43: The DRNN operating in differ-
ent training scenarios - Vx.
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