2 research outputs found

    The Effects of Chronic Stress on CNTF/UCN3 in the pBNST and Hypothalamic PVN in Mice

    No full text
    Post-traumatic stress disorder (PTSD) is characterized by fear extinction deficit; chronic stress worsens this deficit. Using a Chronic Unpredictable Stress (CUS) model, we previously found that CUS increased fear extinction deficit in female mice and knockout of Ciliary Neurotrophic Factor (CNTF) attenuated it. The amygdala, specifically the medial amygdala, is strongly associated with fear conditioning and extinction. CUS increased CNTF and reduced Urocortin 3 (UCN3) in the medial amygdala, suggesting CNTF-mediated UCN3 inhibition may be involved in CUS-induced deficit of fear extinction. The medial amygdala connects to the hypothalamic paraventricular nucleus (PVN) via posterior bed nucleus of stria terminalis (pBNST) and mediates the stress response (Fig. 1). The objective of this project is to determine whether CUS affects CNTF, UCN3, and CNTF-related cytokine leukemia inhibitory factor (LIF) and interleukin-6 (IL-6) in the pBNST and hypothalamic PVN. Hippocampal CNTF expression was also examined as a brain region outside of the medial amygdala-pBNST-hypothalamic PVN circuitry. 4 groups (5 mice/group) of CNTF+/+ and CNTF-/- mice were treated with 4 weeks of CUS or control handling. At the end, fresh brain samples were collected. The hypothalamic PVN, pBNST and hippocampus were punched out from 600-700 um cryostat frozen sections. CUS was applied for 4 weeks. The control mice were handled daily for 4 weeks. RNA was extracted from tissue using QIANGEN Rneasy mini kit. BCA assay was performed to analyze protein concentration, then 10% SDS gel was used to run the protein samples. Statistical analysis included one-way ANOVA followed by Bonferroni multiple comparison or 2-tailed T test. p \u3c0.05 was defined as significant difference. In the pBNST, CUS did not affect CNTF and UCN3 mRNA expression. However, UCN3 protein was upregulated by CUS in CNTF+/+ but not CNTF-/- mice, suggesting CNTF inhibits UCN3 expression, possibly through post-transcriptional mechanism. CUS did not alter LIF and IL-3 in the pBNST. CUS did not alter CNTF mRNA expression in the PVN and further study will measure UCN3 mRNA and protein in the PVN. Finally, there was no CUS effect on CNTF, LIF and IL-6 mRNA in the hippocampus. These results and further studies are useful in development of therapeutic medications and drug targets in the case of chronic stress

    Inhibition of focal adhesion kinase promotes adult olfactory stem cell self-renewal and neuroregeneration via ciliary neurotrophic factor

    No full text
    The Olfactory Epithelium (OE) is a specialized epithelial tissue inside the nasal cavity that is involved in the smell sensation. The OE maintains neuroregeneration, i.e. producing new olfactory sensory neurons, throughout the adult life via neural stem cell self-renewal, proliferation, neuronal differentiation and maturation. The neural stem cell niche regulates stem cell self-renewal and proliferation, and consists of stem cells, blood vessels and multiple extracellular matrix proteins (ECMs). ECMs regulate stem cell adhesion, proliferation, differentiation and migration via integrins. One of the main mediators of intracellular integrin signaling is the Focal Adhesion Kinase (FAK). Our previous studies found that FAK inhibition increased cell proliferation in adult mouse olfactory epithelium (OE) via up-regulation of Ciliary Neurotrophic Factor (CNTF). Now we continue to test whether FAK inhibition increases neuroregeneration through CNTF in the adult mouse OE using BrdU-chase pulse method. Adult male and female C57BL/6, CNTF wildtype and CNTF knockout (lack the CNTF gene) mice were systemically injected with PBS or FAK inhibitor (FAK14) for 3 days. During these 3 days, BrdU was injected into mice 4 h following PBS or FAK on each day. BrdU acts as a thymidine analog and is incorporated into DNA during DNA syntheses. Using immunohistochemistry with anti-BrdU antibody, BrdU+ cells can be visualized in the tissue. The BrdU+ cells are the ones who are replicating during the time frame when BrdU was given. 20 days after last BrdU injection, we fixed the mice via cardiac perfusion. The whole heads of mice was decalcified with EDTA and then frozen cross head sections including OE were cut using cryostat and mounted onto slides. The OE sections were then stained with anti-BrdU antibody followed by FITC-conjugated secondary antibody. The BrdU+ cells in the OE were counted in three sections (both left and right sides) per mouse and normalized to linear length of OE basement membrane. The results of the experiment showed that FAK 14 significantly increased BrdU+ stem cells and olfactory sensory neurons in the OE of C57BL/6 and CNTF wildtype mice but not knockout mice, indicating that FAK inhibition promotes olfactory stem cell self-renewal and neuroregeneration via CNTF. Collectively, this data indicates that FAK normally inhibits OE neuroregeneration by inhibiting CNTF expression and identifies the OE is a good model to study neuroregenerative mechanisms in the CNS
    corecore