9,171 research outputs found
Generalized contour deformation method in momentum space: two-body spectral structures and scattering amplitudes
A generalized contour deformation method (GCDM) which combines complex
rotation and translation in momentum space, is discussed. GCDM gives accurate
results for bound, virtual (antibound), resonant and scattering states starting
with a realistic nucleon-nucleon interaction. It provides a basis for full
off-shell -matrix calculations both for real and complex input energies.
Results for both spectral structures and scattering amplitudes compare
perfectly well with exact values for the separable Yamaguchi potential.
Accurate calculation of virtual states in the Malfliet-Tjon and the realistic
CD-Bonn nucleon-nucleon interactions are presented.
GCDM is also a promising method for the computation of in-medium properties
such as the resummation of particle-particle and particle-hole diagrams in
infinite nuclear matter. Implications for in-medium scattering are discussed.Comment: 15 pages, revte
Unification of the Soluble Two-dimensional vector coupling models
The general theory of a massless fermion coupled to a massive vector meson in
two dimensions is formulated and solved to obtain the complete set of Green's
functions. Both vector and axial vector couplings are included. In addition to
the boson mass and the two coupling constants, a coefficient which denotes a
particular current definition is required for a unique specification of the
model.
The resulting four parameter theory and its solution are shown to reduce in
appropriate limits to all the known soluble models, including in particular the
Schwinger model and its axial vector variant.Comment: 10 page
Soluble field theory with a massless gauge invariant limit
It is shown that there exists a soluble four parameter model in (1+1)
dimensions all of whose propagators can be determined in terms of the
corresponding known propagators of the vector coupling theory. Unlike the
latter case, however, the limit of zero bare mass is nonsingular and yields a
nontrivial theory with a rigorously unbroken gauge invariance.Comment: 7 pages, revtex, no figure
PROPEL: implementation of an evidence based pelvic floor muscle training intervention for women with pelvic organ prolapse: a realist evaluation and outcomes study protocol
Abstract Background Pelvic Organ Prolapse (POP) is estimated to affect 41%–50% of women aged over 40. Findings from the multi-centre randomised controlled “Pelvic Organ Prolapse PhysiotherapY” (POPPY) trial showed that individualised pelvic floor muscle training (PFMT) was effective in reducing symptoms of prolapse, improved quality of life and showed clear potential to be cost-effective. However, provision of PFMT for prolapse continues to vary across the UK, with limited numbers of women’s health physiotherapists specialising in its delivery. Implementation of this robust evidence from the POPPY trial will require attention to different models of delivery (e.g. staff skill mix) to fit with differing care environments. Methods A Realist Evaluation (RE) of implementation and outcomes of PFMT delivery in contrasting NHS settings will be conducted using multiple case study sites. Involving substantial local stakeholder engagement will permit a detailed exploration of how local sites make decisions on how to deliver PFMT and how these lead to service change. The RE will track how implementation is working; identify what influences outcomes; and, guided by the RE-AIM framework, will collect robust outcomes data. This will require mixed methods data collection and analysis. Qualitative data will be collected at four time-points across each site to understand local contexts and decisions regarding options for intervention delivery and to monitor implementation, uptake, adherence and outcomes. Patient outcome data will be collected at baseline, six months and one year follow-up for 120 women. Primary outcome will be the Pelvic Organ Prolapse Symptom Score (POP-SS). An economic evaluation will assess the costs and benefits associated with different delivery models taking account of further health care resource use by the women. Cost data will be combined with the primary outcome in a cost effectiveness analysis, and the EQ-5D-5L data in a cost utility analysis for each of the different models of delivery. Discussion Study of the implementation of varying models of service delivery of PFMT across contrasting sites combined with outcomes data and a cost effectiveness analysis will provide insight into the implementation and value of different models of PFMT service delivery and the cost benefits to the NHS in the longer term
Computation of spectroscopic factors with the coupled-cluster method
We present a calculation of spectroscopic factors within coupled-cluster
theory. Our derivation of algebraic equations for the one-body overlap
functions are based on coupled-cluster equation-of-motion solutions for the
ground and excited states of the doubly magic nucleus with mass number and
the odd-mass neighbor with mass . As a proof-of-principle calculation, we
consider O and the odd neighbors O and N, and compute the
spectroscopic factor for nucleon removal from O. We employ a
renormalized low-momentum interaction of the type derived
from a chiral interaction at next-to-next-to-next-to-leading order. We study
the sensitivity of our results by variation of the momentum cutoff, and then
discuss the treatment of the center of mass.Comment: 8 pages, 6 figures, 3 table
The dynamics of loop formation in a semiflexible polymer
The dynamics of loop formation by linear polymer chains has been a topic of
several theoretical/experimental studies. Formation of loops and their opening
are key processes in many important biological processes. Loop formation in
flexible chains has been extensively studied by many groups. However, in the
more realistic case of semiflexible polymers, not much results are available.
In a recent study (K. P. Santo and K. L. Sebastian, Phys. Rev. E, \textbf{73},
031293 (2006)), we investigated opening dynamics of semiflexible loops in the
short chain limit and presented results for opening rates as a function of the
length of the chain. We presented an approximate model for a semiflexible
polymer in the rod limit, based on a semiclassical expansion of the bending
energy of the chain. The model provided an easy way to describe the dynamics.
In this paper, using this model, we investigate the reverse process, i.e., the
loop formation dynamics of a semiflexible polymer chain by describing the
process as a diffusion-controlled reaction. We perform a detailed
multidimensional analysis of the problem and calculate closing times for a
semiflexible chain which leads to results that are physically expected. Such a
multidimensional analysis leading to these results does not seem to exist in
the literature so far.Comment: 37 pages 4 figure
The Outburst of the Blazar AO 0235+164 in 2006 December: Shock-in-Jet Interpretation
We present the results of polarimetric ( band) and multicolor photometric
() observations of the blazar AO 0235+16 during an outburst in 2006
December. The data reveal a short timescale of variability (several hours),
which increases from optical to near-IR wavelengths; even shorter variations
are detected in polarization. The flux density correlates with the degree of
polarization, and at maximum degree of polarization the electric vector tends
to align with the parsec-scale jet direction. We find that a variable component
with a steady power-law spectral energy distribution and very high optical
polarization (30-50%) is responsible for the variability. We interpret these
properties of the blazar withina model of a transverse shock propagating down
the jet. In this case a small change in the viewing angle of the jet, by
, and a decrease in the shocked plasma compression by a factor of
1.5 are sufficient to account for the variability.Comment: 22 pages, 8 figures, accepted for Ap
- …