5 research outputs found

    Unraveling a Paradox of Habitat Relationships: Scale-Dependent Drivers of Temporal Occupancy-Abundance Relationships in a Cooperatively Breeding Bird

    Get PDF
    Context Spatial occupancy and local abundance of species often positively covary, but the mechanisms driving this widespread relationship are poorly understood. Resource dynamics and habitat changes have been suggested as potential drivers, but long-term studies relating them to abundance and occupancy are rare. In this 34-year study of acorn woodpeckers (Melanerpes formicivorus), a cooperatively breeding species, we observed a paradoxical response to changes in habitat composition: despite a reduction in the availability of high-quality breeding habitat, the population increased considerably. Objectives We investigated the role of annual variation in food availability and long-term changes in habitat composition as predictors of population dynamics. Methods Using model selection, we contrasted competing hypotheses on the effects of changing resource availability on occupancy and social group size across three spatial scales: territory, neighborhood, and landscape. Results The increase in abundance was largely determined by the formation of new social groups, driven by a landscape-level expansion of canopy cover and its interaction with neighborhood-level acorn abundance, indicative of long-term increases in overall acorn productivity. Group size increased with neighborhood acorn crop two years earlier but groups were smaller in territories with more canopy cover. Conclusions Our results indicate that scale-dependent processes can result in paradoxical relationships in systems with spatial and temporal resource heterogeneity. Moreover, the findings support the role of resources in driving changes in abundance and occupancy at a landscape scale, suggesting that colonization of marginal habitat drives the positive occupancy-abundance relationship in this cooperatively breeding species

    Local Avian Density Influences Risk of Mortality from Window Strikes

    Get PDF
    Up to a billion birds die per year in North America as a result of striking windows. Both transparent and reflective glass panes are a cause for concern, misleading birds by either acting as invisible, impenetrable barriers to desired resources, or reflecting those resources over a large surface area. A high number of window strikes occur during migration, but little is known about the factors of susceptibility, or whether particular avian taxa are more vulnerable than others. We report on a study of window strikes and mist-netting data at the Virginia Zoological Park (Norfolk, Virginia, USA), conducted in the autumn of 2013 and 2014. We focused on three factors likely to contribute to an individual\u27s predisposition to collide with windows: (i) taxonomic classification, (ii) age, and (iii) migrant vs. resident status. Thrushes, dominated by the partial migrant American Robin (Turdus migratorius), were significantly less likely to strike glass than be sampled in mist nets (χ2 = 9.21, p = 0.002), while wood-warblers (Parulidae) were more likely to strike than expected (χ2 = 13.55, p \u3c 0.001). The proportion of juveniles striking windows (45.4%) was not significantly different (χ2 = 0.05, p = 0.827) than the population of juvenile birds naturally occurring at the zoo (48.8%). Migrants, however, were significantly more susceptible to window strikes than residents (χ2 = 6.35, p = 0.012). Our results suggest that resident birds are able to learn to avoid and thus reduce their likelihood of striking windows; this intrinsic risk factor may help explain the apparent susceptibility of certain taxa to window strikes

    Continent-wide analysis of how urbanization affects bird-window collision mortality in North America

    No full text
    Characteristics of buildings and land cover surrounding buildings influence the number of bird-window collisions, yet little is known about whether bird-window collisions are associated with urbanization at large spatial scales. We initiated a continent-wide study in North America to assess how bird-window collision mortality is influenced by building characteristics, landscaping around buildings, and regional urbanization. In autumn 2014, researchers at 40 sites (N = 281 buildings) used standardized protocols to document collision mortality of birds, evaluate building characteristics, and measure local land cover and regional urbanization. Overall, 324 bird carcasses were observed (range = 0–34 per site) representing 71 species. Consistent with previous studies, we found that building size had a strong positive effect on bird-window collision mortality, but the strength of the effect on mortality depended on regional urbanization. The positive relationship between collision mortality and building size was greatest at large buildings in regions of low urbanization, locally extensive lawns, and low-density structures. Collision mortality was consistently low for small buildings, regardless of large-scale urbanization. The mechanisms shaping broad-scale variation in collision mortality during seasonal migration may be related to habitat selection at a hierarchy of scales and behavioral divergence between urban and rural bird populations. These results suggest that collision prevention measures should be prioritized at large buildings in regions of low urbanization throughout North America

    Continent-wide analysis of how urbanization affects bird-window collision mortality in North America

    No full text
    Characteristics of buildings and land cover surrounding buildings influence the number of bird-window collisions, yet little is known about whether bird-window collisions are associated with urbanization at large spatial scales. We initiated a continent-wide study in North America to assess how bird-window collision mortality is influenced by building characteristics, landscaping around buildings, and regional urbanization. In autumn 2014, researchers at 40 sites (N = 281 buildings) used standardized protocols to document collision mortality of birds, evaluate building characteristics, and measure local land cover and regional urbanization. Overall, 324 bird carcasses were observed (range = 0–34 per site) representing 71 species. Consistent with previous studies, we found that building size had a strong positive effect on bird-window collision mortality, but the strength of the effect on mortality depended on regional urbanization. The positive relationship between collision mortality and building size was greatest at large buildings in regions of low urbanization, locally extensive lawns, and low-density structures. Collision mortality was consistently low for small buildings, regardless of large-scale urbanization. The mechanisms shaping broad-scale variation in collision mortality during seasonal migration may be related to habitat selection at a hierarchy of scales and behavioral divergence between urban and rural bird populations. These results suggest that collision prevention measures should be prioritized at large buildings in regions of low urbanization throughout North America
    corecore