1,102 research outputs found

    Comparison of Accelerated Solvent Extraction (ASE) and Energized Dispersive Guided Extraction (EDGE) for the Analysis of Pesticides in Leaves

    Get PDF
    Various techniques have been evaluated for the extraction and cleanup of pesticides from environmental samples. In this work, a Selective Pressurized Liquid Extraction (SPLE) method for pesticides was developed using a Thermo Fisher Scientific Accelerated Solvent Extraction (ASE) system. This instrument was compared to the newly introduced (2017) extraction instrument, the Energized Dispersive Guided Extraction (EDGE) system, which combines Pressurized Liquid Extraction (PLE) and dispersive Solid Phase Extraction (dSPE). We first optimized the SPLE method using the ASE instrument for pesticide extraction from alfalfa leaves using layers of Florisil and graphitized carbon black (GCB) downstream of the leaf homogenate in the extraction cell (Layered ASE method). We then compared results obtained for alfalfa and citrus leaves with the Layered ASE method to those from a method in which the leaf homogenate and sorbents were mixed (Mixed ASE method) and to similar methods modified for use with EDGE (Layered EDGE and Mixed EDGE methods). The ASE and EDGE methods led to clear, colorless extracts with low residual lipid weight. No significant differences in residual lipid masses were observed between the methods. The UV-Vis spectra showed that Florisil removed a significant quantity of the light-absorbing chemicals, but that GCB was required to produce colorless extracts. Recoveries of spiked analytes into leaf homogenates were generally similar among methods, but in several cases, significantly higher recoveries were observed in ASE extracts. Nonetheless, no significant differences were observed among pesticide concentrations in field samples when calculated with the isotope dilution method in which labelled surrogates were added to samples before extraction. The extraction time with the ASE methods was ~45 minutes, which was ~4.5 times longer than with the EDGE methods. The EDGE methods used ~10 mL more solvent than the ASE methods. Based on these results, the EDGE is an acceptable extraction instrument and, for most compounds, the EDGE had a similar extraction efficiency to the ASE methods

    Role of transport performance on neuron cell morphology

    Full text link
    The compartmental model is a basic tool for studying signal propagation in neurons, and, if the model parameters are adequately defined, it can also be of help in the study of electrical or fluid transport. Here we show that the input resistance, in different networks which simulate the passive properties of neurons, is the result of an interplay between the relevant conductances, morphology and size. These results suggest that neurons must grow in such a way that facilitates the current flow. We propose that power consumption is an important factor by which neurons attain their final morphological appearance.Comment: 9 pages with 3 figures, submitted to Neuroscience Letter

    Quenched QCD at finite density

    Full text link
    Simulations of quenched QCDQCD at relatively small but {\it nonzero} chemical potential μ\mu on 32×16332 \times 16^3 lattices indicate that the nucleon screening mass decreases linearly as μ\mu increases predicting a critical chemical potential of one third the nucleon mass, mN/3m_N/3, by extrapolation. The meson spectrum does not change as μ\mu increases over the same range, from zero to mπ/2m_\pi/2. Past studies of quenched lattice QCD have suggested that there is phase transition at μ=mπ/2\mu = m_\pi/2. We provide alternative explanations for these results, and find a number of technical reasons why standard lattice simulation techniques suffer from greatly enhanced fluctuations and finite size effects for μ\mu ranging from mπ/2m_\pi/2 to mN/3m_N/3. We find evidence for such problems in our simulations, and suggest that they can be surmounted by improved measurement techniques.Comment: 23 pages, Revte

    Directional Microwave Emission from Femtosecond-laser Illuminated Linear Arrays of Superconducting Rings

    Get PDF
    We examine the electromagnetic emission from two photo-illuminated linear arrays composed of inductively charged superconducting ring elements. The arrays are illuminated by an ultrafast infrared laser that triggers microwave broadband emission detected in the 1–26 GHz range. Based on constructive interference from the arrays a narrowing of the forward radiation lobe is observed with increasing element count and frequency demonstrating directed GHz emission. Results suggest that higher frequencies and a larger number of elements are achievable leading to a unique pulsed array emitter concept that can span frequencies from the microwave to the terahertz (THz) regime

    Adaptive mesh refinement approach to construction of initial data for black hole collisions

    Get PDF
    The initial data for black hole collisions is constructed using a conformal-imaging approach and a new adaptive mesh refinement technique, a fully threaded tree (FTT). We developed a second-order accurate approach to the solution of the constraint equations on a non-uniformly refined high resolution Cartesian mesh including second-order accurate treatment of boundary conditions at the black hole throats. Results of test computations show convergence of the solution as the numerical resolution is increased. FTT-based mesh refinement reduces the required memory and computer time by several orders of magnitude compared to a uniform grid. This opens up the possibility of using Cartesian meshes for very high resolution simulations of black hole collisions.Comment: 13 pages, 11 figure

    Current-Use Pesticides in New Zealand Streams: Comparing Results From Grab Samples and Three Types of Passive Samplers

    Get PDF
    New Zealand uses more than a ton of pesticides each year; many of these are mobile, relatively persistent, and can make their way into waterways. While considerable effort goes into monitoring nutrients in agricultural streams and programs exist to monitor pesticides in groundwater, very little is known about pesticide detection frequencies, concentrations, or their potential impacts in New Zealand streams. We used the ‘Polar Organic Chemical Integrative Sampler’ (POCIS) approach and grab water sampling to survey pesticide concentrations in 36 agricultural streams in Waikato, Canterbury, Otago and Southland during a period of stable stream flows in Austral summer 2017/18. We employed a new approach for calculating site-specific POCIS sampling rates. We also tested two novel passive samplers designed to reduce the effects of hydrodynamic conditions on sampling rates: the ‘Organic-Diffusive Gradients in Thin Films’ (o-DGT) aquatic passive sampler and microporous polyethylene tubes (MPTs) filled with Strata-X sorbent. Multiple pesticides were found at most sites; two or more were detected at 78% of sites, three or more at 69% of sites, and four or more at 39% of sites. Chlorpyrifos concentrations were the highest, with a maximum concentration of 180 ng/L. Concentrations of the other pesticides were generally below 20 ng/L. Mean concentrations of individual pesticides were not correlated with in-stream nutrient concentrations. The majority of pesticides were detected most frequently in POCIS, presumably due to its higher sampling rate and the relatively low concentrations of these pesticides. In contrast, chlorpyrifos was most frequently detected in grab samples. Chlorpyrifos concentrations at two sites were above the 21-day chronic ‘No Observable Effect Concentration’ (NOEC) values for fish and another two sites had concentrations greater than 50% of the NOEC. Otherwise, concentrations were well-below NOEC values, but close to the New Zealand Environmental Exposure Limits in several cases
    • …
    corecore