3,717 research outputs found

    Analysis of free analyte fractions by rapid affinity chromatography

    Get PDF
    The invention is generally directed toward an analytical method to determine the concentration of the free analyte fraction in a sample. More particularly, the method encompasses applying a sample comprising a free and bound analyte fraction to an affinity column capable of selectively extracting the free fraction in the millisecond time domain. The signal generated by the free fraction is then quantified by standard analytical detection techniques. The concentration of the free fraction may then be determined by comparison of its signal with that of a calibration curve depicting the signal of known concentration of the same analyte

    Bioanalysis Young Investigator Award – sponsored by Waters- Michelle J. Yoo

    Get PDF
    Supervisor’s supporting comments have always been impressed with Michelle’s ability to conduct research in an independent and yet highly effective manner. Part of her research in my group has examined the use of affinity columns to examine drug–protein binding with serum proteins, such as human serum albumin. This work is extremely important to the fields of pharmaceutical chemistry and clinical chemistry in providing the data needed for the development of new drugs or in the optimization of treatments for patients with new, or existing, drugs. Another topic that Michelle has examined in her research is the use of new supports based on monolithic materials and ultrafast-extraction methods for affinity-based separations of biological samples and high-throughput screening of drug–protein binding. She was the lead author on a review written on this topic and also has several research publications related to this area of work. During her graduate studies, Michelle has emerged as a real leader in my group. She has excellent people and communication skills and is highly motivated in her pursuit of an advanced degree in analytical chemistry and bioanalysis. I have extremely high expectations for her in the future as she continues her career

    Bioanalysis Young Investigator Award – sponsored by Waters- Michelle J. Yoo

    Get PDF
    Supervisor’s supporting comments have always been impressed with Michelle’s ability to conduct research in an independent and yet highly effective manner. Part of her research in my group has examined the use of affinity columns to examine drug–protein binding with serum proteins, such as human serum albumin. This work is extremely important to the fields of pharmaceutical chemistry and clinical chemistry in providing the data needed for the development of new drugs or in the optimization of treatments for patients with new, or existing, drugs. Another topic that Michelle has examined in her research is the use of new supports based on monolithic materials and ultrafast-extraction methods for affinity-based separations of biological samples and high-throughput screening of drug–protein binding. She was the lead author on a review written on this topic and also has several research publications related to this area of work. During her graduate studies, Michelle has emerged as a real leader in my group. She has excellent people and communication skills and is highly motivated in her pursuit of an advanced degree in analytical chemistry and bioanalysis. I have extremely high expectations for her in the future as she continues her career

    An Overview of Capillary Electrophoresis (CE) in Clinical Analysis

    Get PDF
    The development and general applications of capillary electrophoresis (CE) in the field of clinical chemistry are discussed. It is shown how the early development of electrophoresis was closely linked to clinical testing. The rise of gel electrophoresis in clinical chemistry is described, as well as the eventual developments that lead to the creation and the use of modern CE. The general principles of CE are reviewed and the potential advantages of this method in clinical testing are examined. Finally, an overview is presented of several areas in which CE has been developed and is currently being explored for use with clinical samples

    Characterization of the Binding Of Sulfonylurea Drugs to HSA by High-Performance Affinity Chromatography

    Get PDF
    Sulfonylurea drugs are often prescribed as a treatment for type II diabetes to help lower blood sugar levels by stimulating insulin secretion. These drugs are believed to primarily bind in blood to human serum albumin (HSA). This study used high-performance affinity chromatography (HPAC) to examine the binding of sulfonylureas to HSA. Frontal analysis with an immobilized HSA column was used to determine the association equilibrium constants (Ka) and number of binding sites on HSA for the sulfonylurea drugs acetohexamide and tolbutamide. The results from frontal analysis indicated HSA had a group of relatively high affinity binding regions and weaker binding sites for each drug, with average Ka values of 1.3 (± 0.2) × 105 M−1 and 3.5 (± 3.0) × 102 M−1 for acetohexamide and values of 8.7 (± 0.6) × 104 and 8.1 (± 1.7) × 103 M−1 for tolbutamide. Zonal elution and competition studies with site-specific probes were used to further examine the relatively high affinity interactions of these drugs by looking directly at the interactions that were occurring at Sudlow sites I and II of HSA (i.e., the major drug binding sites on this protein). It was found that acetohexamide was able to bind at both Sudlow sites I and II, with Ka values of 1.3 (± 0.1) × 105 and 4.3 (± 0.3) × 104 M−1, respectively, at 37°C. Tolbutamide also appeared to interact with both Sudlow sites I and II, with Ka values of 5.5 (± 0.2) × 104 and 5.3 (± 0.2) × 104 M−1, respectively. The results provide a more quantitative picture of how these drugs bind with HSA and illustrate how HPAC and related tools can be used to examine relatively complex drug-protein interactions

    IMMOBILIZATION METHOD FOR PRODUCING ACTIVE α1-ACID GLYCOPROTEIN

    Get PDF
    A method and kit for immobilization of a glycoprotein. The method may include activating an affinity Support. The affinity Support may be activated by reacting the affinity Support with a compound that is reactive with one or more functional groups included within the glycoprotein. The method may also include oxidizing the glycoprotein in which oxidation conditions are selected to yield an oxidized glycoprotein that is biologically active and contains a Sufficient number of reactive aldehyde groups for coupling to a Support. For example, the oxidized glycoprotein may include five reactive aldehyde groups. In addition, the method may include reacting the oxidized-glycoprotein with the activated affinity Sup port to immobilize the glycoprotein

    Characterization of the Binding Of Sulfonylurea Drugs to HSA by High-Performance Affinity Chromatography

    Get PDF
    Sulfonylurea drugs are often prescribed as a treatment for type II diabetes to help lower blood sugar levels by stimulating insulin secretion. These drugs are believed to primarily bind in blood to human serum albumin (HSA). This study used high-performance affinity chromatography (HPAC) to examine the binding of sulfonylureas to HSA. Frontal analysis with an immobilized HSA column was used to determine the association equilibrium constants (Ka) and number of binding sites on HSA for the sulfonylurea drugs acetohexamide and tolbutamide. The results from frontal analysis indicated HSA had a group of relatively high affinity binding regions and weaker binding sites for each drug, with average Ka values of 1.3 (± 0.2) × 105 M−1 and 3.5 (± 3.0) × 102 M−1 for acetohexamide and values of 8.7 (± 0.6) × 104 and 8.1 (± 1.7) × 103 M−1 for tolbutamide. Zonal elution and competition studies with site-specific probes were used to further examine the relatively high affinity interactions of these drugs by looking directly at the interactions that were occurring at Sudlow sites I and II of HSA (i.e., the major drug binding sites on this protein). It was found that acetohexamide was able to bind at both Sudlow sites I and II, with Ka values of 1.3 (± 0.1) × 105 and 4.3 (± 0.3) × 104 M−1, respectively, at 37°C. Tolbutamide also appeared to interact with both Sudlow sites I and II, with Ka values of 5.5 (± 0.2) × 104 and 5.3 (± 0.2) × 104 M−1, respectively. The results provide a more quantitative picture of how these drugs bind with HSA and illustrate how HPAC and related tools can be used to examine relatively complex drug-protein interactions

    Development and Evaluation of Silica-Based Lectin Microcolumns for Glycoform Analysis of Alpha1-Acid Glycoprotein

    Get PDF
    Silica-based lectin microcolumns were developed and optimized for the separation and analysis of glycoform fractions in alpha1-acid glycoprotein (AGP) based on both the degree of branching and level of fucosylation. Concanavalin A (Con A) and Aleuria Aurantia lectin (AAL) were immobilized onto HPLC-grade silica by reductive amination and packed into 2.1 mm i.d. × 5.0 cm microcolumns. Factors examined for these microcolumns include their protein content, binding capacity, binding strength and band-broadening under isocratic conditions (Con A) or step elution conditions (AAL) and in the presence of various flow rates or temperatures. These factors were examined by using experiments based on frontal analysis, zonal elution, peak profiling and peak decay analysis. Up to 200 μg AGP could be loaded onto a Con A microcolumn and provide linear elution conditions, and 100 μg AGP could be applied to an AAL microcolumn. The final conditions for separating retained and non-retained AGP glycoform fractions on a Con A microcolumn used a flow rate of 50 μL min−1 and a temperature of 50 °C, which gave a separation of these fractions within 20 min or less. The final conditions for an AAL microcolumn included a flow rate of 0.75 mL min−1, a temperature of 50 °C, and the use of 2.0 mM L-fucose as a competing agent for elution, giving a separation of non-retained and retained AGP glycoforms in 6 min or less. The inter-day precisions were ± 0.7–4.0% or less for the retention times of the AGP glycoforms and ± 2.2–3.0% or less for their peak areas

    Curate and storyspace: an ontology and web-based environment for describing curatorial narratives

    Get PDF
    Existing metadata schemes and content management systems used by museums focus on describing the heritage objects that the museum holds in its collection. These are used to manage and describe individual heritage objects according to properties such as artist, date and preservation requirements. Curatorial narratives, such as physical or online exhibitions tell a story that spans across heritage objects and have a meaning that does not necessarily reside in the individual heritage objects themselves. Here we present curate, an ontology for describing curatorial narratives. This draws on structuralist accounts that distinguish the narrative from the story and plot, and also a detailed analysis of two museum exhibitions and the curatorial processes that contributed to them. Storyspace, our web based interface and API to the ontology, is being used by curatorial staff in two museums to model curatorial narratives and the processes through which they are constructed

    Analysis of free analyte fractions by rapid affinity chromatography

    Get PDF
    The invention is generally directed toward an analytical method to determine the concentration of the free analyte fraction in a sample. More particularly, the method encompasses applying a sample comprising a free and bound analyte fraction to an affinity column capable of selectively extracting the free fraction in the millisecond time domain. The signal generated by the free fraction is then quantified by standard analytical detection techniques. The concentration of the free fraction may then be determined by comparison of its signal with that of a calibration curve depicting the signal of known concentration of the same analyte
    corecore