14 research outputs found
Detection of Melanoma Metastases in Resected Human Lymph Nodes by Noninvasive Multispectral Photoacoustic Imaging
Objective. Sentinel node biopsy in patients with cutaneous melanoma improves staging, provides prognostic information, and leads to an increased survival in node-positive patients. However, frozen section analysis of the sentinel node is not reliable and definitive histopathology evaluation requires days, preventing intraoperative decision-making and immediate therapy. Photoacoustic imaging can evaluate intact lymph nodes, but specificity can be hampered by other absorbers such as hemoglobin. Near infrared multispectral photoacoustic imaging is a new approach that has the potential to selectively detect melanin. The purpose of the present study is to examine the potential of multispectral photoacoustic imaging to identify melanoma metastasis in human lymph nodes. Methods. Three metastatic and nine benign lymph nodes from eight melanoma patients were scanned ex vivo using a Vevo LAZR multispectral photoacoustic imager and were spectrally analyzed per pixel. The results were compared to histopathology as gold standard. Results. The nodal volume could be scanned within 20 minutes. An unmixing procedure was proposed to identify melanoma metastases with multispectral photoacoustic imaging. Ultrasound overlay enabled anatomical correlation. The penetration depth of the photoacoustic signal was up to 2 cm. Conclusion. Multispectral three-dimensional photoacoustic imaging allowed for selective identification of melanoma metastases in human lymph nodes
Personalized response-directed surgery and adjuvant therapy after neoadjuvant ipilimumab and nivolumab in high-risk stage III melanoma: the PRADO trial
Neoadjuvant ipilimumab and nivolumab induces high pathologic response rates (pRRs) in clinical stage III nodal melanoma, and pathologic response is strongly associated with prolonged relapse-free survival (RFS). The PRADO extension cohort of the OpACIN-neo trial ( NCT02977052 ) addressed the feasibility and effect on clinical outcome of using pathologic response after neoadjuvant ipilimumab and nivolumab as a criterion for further treatment personalization. In total, 99 patients with clinical stage IIIb-d nodal melanoma were included and treated with 6 weeks of neoadjuvant ipilimumab 1 mg kg-1 and nivolumab 3 mg kg-1. In patients achieving major pathologic response (MPR, ≤10% viable tumor) in their index lymph node (ILN, the largest lymph node metastasis at baseline), therapeutic lymph node dissection (TLND) and adjuvant therapy were omitted. Patients with pathologic partial response (pPR; >10 to ≤50% viable tumor) underwent TLND only, whereas patients with pathologic non-response (pNR; >50% viable tumor) underwent TLND and adjuvant systemic therapy ± synchronous radiotherapy. Primary objectives were confirmation of pRR (ILN, at week 6) of the winner neoadjuvant combination scheme identified in OpACIN-neo; to investigate whether TLND can be safely omitted in patients achieving MPR; and to investigate whether RFS at 24 months can be improved for patients achieving pNR. ILN resection and ILN-response-tailored treatment were feasible. The pRR was 72%, including 61% MPR. Grade 3-4 toxicity within the first 12 weeks was observed in 22 (22%) patients. TLND was omitted in 59 of 60 patients with MPR, resulting in significantly lower surgical morbidity and better quality of life. The 24-month relapse-free survival and distant metastasis-free survival rates were 93% and 98% in patients with MPR, 64% and 64% in patients with pPR, and 71% and 76% in patients with pNR, respectively. These findings provide a strong rationale for randomized clinical trials testing response-directed treatment personalization after neoadjuvant ipilimumab and nivolumab