2,442 research outputs found

    Stratified spatiotemporal chaos in anisotropic reaction-diffusion systems

    Full text link
    Numerical simulations of two dimensional pattern formation in an anisotropic bistable reaction-diffusion medium reveal a new dynamical state, stratified spatiotemporal chaos, characterized by strong correlations along one of the principal axes. Equations that describe the dependence of front motion on the angle illustrate the mechanism leading to stratified chaos

    Differential amplification of rDNA repeats in barley translocation and duplication lines: role of a specific segment

    Get PDF
    Variation in restriction pattern, relative amounts of the two ribosomal DNA (rDNA) repeats, and the overall content of rDNA were compared among twelve segmental duplications and eleven parental translocations involving NOR6 and NOR7 of cultivated barley. Southern blot hybridization revealed two rDNA repeats of 9.9 kb and 9.0 kb. While all duplications snowed dimers for these rDNA repeats, the duplication lines D29 and D47 displayed trimers in addition to a higher proportion of rDNA repeats as dimers. The rDNA of Dl, D29 and D47 showed resistance to Bam HI and Taq I digestion, indicating possible melhylation of cytosine and adenine. Densitometric scans of autoradiographs revealed variations in the relative amounts of the 9.0 kb and 9.9 kb rDNA repeats among different karyotypes. Dot blot hybridizations indicated variation in the overall rDNA content. Comparison of the 9.0/9.9 kb ratios and the percentage of genomic DNA hybridizing to an rDNA clone of barley illustrates differential amplification for the two rDNA repeats. When the segmental composition of these deviating lines were compared, it was evident that the relative position of the segment 12-16 of chromosome 6 determines differential amplification while duplication of the same segment controls the overall rDNA content

    Breathing Spots in a Reaction-Diffusion System

    Full text link
    A quasi-2-dimensional stationary spot in a disk-shaped chemical reactor is observed to bifurcate to an oscillating spot when a control parameter is increased beyond a critical value. Further increase of the control parameter leads to the collapse and disappearance of the spot. Analysis of a bistable activator-inhibitor model indicates that the observed behavior is a consequence of interaction of the front with the boundary near a parity breaking front bifurcation.Comment: 4 pages RevTeX, see also http://chaos.ph.utexas.edu/ and http://t7.lanl.gov/People/Aric

    Multi-Phase Patterns in Periodically Forced Oscillatory Systems

    Full text link
    Periodic forcing of an oscillatory system produces frequency locking bands within which the system frequency is rationally related to the forcing frequency. We study extended oscillatory systems that respond to uniform periodic forcing at one quarter of the forcing frequency (the 4:1 resonance). These systems possess four coexisting stable states, corresponding to uniform oscillations with successive phase shifts of π/2\pi/2. Using an amplitude equation approach near a Hopf bifurcation to uniform oscillations, we study front solutions connecting different phase states. These solutions divide into two groups: π\pi-fronts separating states with a phase shift of π\pi and π/2\pi/2-fronts separating states with a phase shift of π/2\pi/2. We find a new type of front instability where a stationary π\pi-front ``decomposes'' into a pair of traveling π/2\pi/2-fronts as the forcing strength is decreased. The instability is degenerate for an amplitude equation with cubic nonlinearities. At the instability point a continuous family of pair solutions exists, consisting of π/2\pi/2-fronts separated by distances ranging from zero to infinity. Quintic nonlinearities lift the degeneracy at the instability point but do not change the basic nature of the instability. We conjecture the existence of similar instabilities in higher 2n:1 resonances (n=3,4,..) where stationary π\pi-fronts decompose into n traveling π/n\pi/n-fronts. The instabilities designate transitions from stationary two-phase patterns to traveling 2n-phase patterns. As an example, we demonstrate with a numerical solution the collapse of a four-phase spiral wave into a stationary two-phase pattern as the forcing strength within the 4:1 resonance is increased

    Propagation Failure in Excitable Media

    Full text link
    We study a mechanism of pulse propagation failure in excitable media where stable traveling pulse solutions appear via a subcritical pitchfork bifurcation. The bifurcation plays a key role in that mechanism. Small perturbations, externally applied or from internal instabilities, may cause pulse propagation failure (wave breakup) provided the system is close enough to the bifurcation point. We derive relations showing how the pitchfork bifurcation is unfolded by weak curvature or advective field perturbations and use them to demonstrate wave breakup. We suggest that the recent observations of wave breakup in the Belousov-Zhabotinsky reaction induced either by an electric field or a transverse instability are manifestations of this mechanism.Comment: 8 pages. Aric Hagberg: http://cnls.lanl.gov/~aric; Ehud Meron:http://www.bgu.ac.il/BIDR/research/staff/meron.htm

    Controlling domain patterns far from equilibrium

    Full text link
    A high degree of control over the structure and dynamics of domain patterns in nonequilibrium systems can be achieved by applying nonuniform external fields near parity breaking front bifurcations. An external field with a linear spatial profile stabilizes a propagating front at a fixed position or induces oscillations with frequency that scales like the square root of the field gradient. Nonmonotonic profiles produce a variety of patterns with controllable wavelengths, domain sizes, and frequencies and phases of oscillations.Comment: Published version, 4 pages, RevTeX. More at http://t7.lanl.gov/People/Aric

    Order Parameter Equations for Front Transitions: Planar and Circular Fronts

    Full text link
    Near a parity breaking front bifurcation, small perturbations may reverse the propagation direction of fronts. Often this results in nonsteady asymptotic motion such as breathing and domain breakup. Exploiting the time scale differences of an activator-inhibitor model and the proximity to the front bifurcation, we derive equations of motion for planar and circular fronts. The equations involve a translational degree of freedom and an order parameter describing transitions between left and right propagating fronts. Perturbations, such as a space dependent advective field or uniform curvature (axisymmetric spots), couple these two degrees of freedom. In both cases this leads to a transition from stationary to oscillating fronts as the parity breaking bifurcation is approached. For axisymmetric spots, two additional dynamic behaviors are found: rebound and collapse.Comment: 9 pages. Aric Hagberg: http://t7.lanl.gov/People/Aric/; Ehud Meron: http://www.bgu.ac.il/BIDR/research/staff/meron.htm
    • …
    corecore