4,201 research outputs found
Mechanisms of kinetic trapping in self-assembly and phase transformation
In self-assembly processes, kinetic trapping effects often hinder the
formation of thermodynamically stable ordered states. In a model of viral
capsid assembly and in the phase transformation of a lattice gas, we show how
simulations in a self-assembling steady state can be used to identify two
distinct mechanisms of kinetic trapping. We argue that one of these mechanisms
can be adequately captured by kinetic rate equations, while the other involves
a breakdown of theories that rely on cluster size as a reaction coordinate. We
discuss how these observations might be useful in designing and optimising
self-assembly reactions
Hybrid Method for Digits Recognition using Fixed-Frame Scores and Derived Pitch
This paper presents a procedure of frame normalization based on the traditional dynamic time warping (DTW) using the LPC coefficients. The redefined method is called as the DTW frame-fixing method (DTW-FF), it works by normalizing the word frames of the input against the
reference frames. The enthusiasm to this study is due to neural network limitation that entails a fix number of input nodes for when processing multiple inputs in parallel. Due to this problem, this research is initiated to reduce the amount of computation and complexity in a neural network by reducing the number of inputs into the network. In this study, dynamic warping process is used, in which local distance scores of the warping path are fixed and collected so that their scores are of equal number of frames. Also studied in this paper is the
consideration of pitch as a contributing feature to the speech recognition. Results showed a good performance and
improvement when using pitch along with DTW-FF feature.
The convergence rate between using the steepest gradient
descent is also compared to another method namely conjugate
gradient method. Convergence rate is also improved when
conjugate gradient method is introduced in the back-propagation algorithm
Reduction and reconstruction of stochastic differential equations via symmetries
An algorithmic method to exploit a general class of infinitesimal symmetries
for reducing stochastic differential equations is presented and a natural
definition of reconstruction, inspired by the classical reconstruction by
quadratures, is proposed. As a side result the well-known solution formula for
linear one-dimensional stochastic differential equations is obtained within
this symmetry approach. The complete procedure is applied to several examples
with both theoretical and applied relevance
When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation
Active Brownian particles (ABPs, such as self-phoretic colloids) swim at
fixed speed along a body-axis that rotates by slow angular
diffusion. Run-and-tumble particles (RTPs, such as motile bacteria) swim with
constant \u until a random tumble event suddenly decorrelates the
orientation. We show that when the motility parameters depend on density
but not on , the coarse-grained fluctuating hydrodynamics of
interacting ABPs and RTPs can be mapped onto each other and are thus strictly
equivalent. In both cases, a steeply enough decreasing causes phase
separation in dimensions , even when no attractive forces act between
the particles. This points to a generic role for motility-induced phase
separation in active matter. However, we show that the ABP/RTP equivalence does
not automatically extend to the more general case of \u-dependent motilities
Spatially Resolved Mapping of Local Polarization Dynamics in an Ergodic Phase of Ferroelectric Relaxor
Spatial variability of polarization relaxation kinetics in relaxor
ferroelectric 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 is studied using time-resolved
Piezoresponse Force Microscopy. Local relaxation attributed to the
reorientation of polar nanoregions is shown to follow stretched exponential
dependence, exp(-(t/tau)^beta), with beta~~0.4, much larger than the
macroscopic value determined from dielectric spectra (beta~~0.09). The spatial
inhomogeneity of relaxation time distributions with the presence of 100-200 nm
"fast" and "slow" regions is observed. The results are analyzed to map the
Vogel-Fulcher temperatures on the nanoscale.Comment: 23 pages, 4 figures, supplementary materials attached; to be
submitted to Phys. Rev. Let
Peak Forecasting for Battery-based Energy Optimizations in Campus Microgrids
Battery-based energy storage has emerged as an enabling technology for a
variety of grid energy optimizations, such as peak shaving and cost arbitrage.
A key component of battery-driven peak shaving optimizations is peak
forecasting, which predicts the hours of the day that see the greatest demand.
While there has been significant prior work on load forecasting, we argue that
the problem of predicting periods where the demand peaks for individual
consumers or micro-grids is more challenging than forecasting load at a grid
scale. We propose a new model for peak forecasting, based on deep learning,
that predicts the k hours of each day with the highest and lowest demand. We
evaluate our approach using a two year trace from a real micro-grid of 156
buildings and show that it outperforms the state of the art load forecasting
techniques adapted for peak predictions by 11-32%. When used for battery-based
peak shaving, our model yields annual savings of $496,320 for a 4 MWhr battery
for this micro-grid.Comment: 5 pages. 4 figures, This paper will appear in the Proceedings of ACM
International Conference on Future Energy Systems (e-Energy'20), June 202
Interaction of Vortices in Complex Vector Field and Stability of a ``Vortex Molecule''
We consider interaction of vortices in the vector complex Ginzburg--Landau
equation (CVGLE). In the limit of small field coupling, it is found
analytically that the interaction between well-separated defects in two
different fields is long-range, in contrast to interaction between defects in
the same field which falls off exponentially. In a certain region of parameters
of CVGLE, we find stable rotating bound states of two defects -- a ``vortex
molecule".Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
- …