36 research outputs found

    Germline DDX41 mutations cause ineffective hematopoiesis and myelodysplasia

    Get PDF
    DDX41 mutations are the most common germline alterations in adult myelodysplastic syndromes (MDSs). The majority of affected individuals harbor germline monoallelic frameshift DDX41 mutations and subsequently acquire somatic mutations in their other DDX41 allele, typically missense R525H. Hematopoietic progenitor cells (HPCs) with biallelic frameshift and R525H mutations undergo cell cycle arrest and apoptosis, causing bone marrow failure in mice. Mechanistically, DDX41 is essential for small nucleolar RNA (snoRNA) processing, ribosome assembly, and protein synthesis. Although monoallelic DDX41 mutations do not affect hematopoiesis in young mice, a subset of aged mice develops features of MDS. Biallelic mutations in DDX41 are observed at a low frequency in non-dominant hematopoietic stem cell clones in bone marrow (BM) from individuals with MDS. Mice chimeric for monoallelic DDX41 mutant BM cells and a minor population of biallelic mutant BM cells develop hematopoietic defects at a younger age, suggesting that biallelic DDX41 mutant cells are disease modifying in the context of monoallelic DDX41 mutant BM

    Malignant Transformation Involving CXXC4 Mutations Identified in a Leukemic Progression Model of Severe Congenital Neutropenia

    Get PDF
    Olofsen et al. show that acquisition of a mutation in Cxxc4 results in increased CXXC4 protein levels, reduced TET2 protein, increased inflammatory signaling, and leukemic progression of a CSF3R/RUNX1 mutant mouse model of severe congenital neutropenia (SCN).Severe congenital neutropenia (SCN) patients treated with CSF3/G-CSF to alleviate neutropenia frequently develop acute myeloid leukemia (AML). A common pattern of leukemic transformation involves the appearance of hematopoietic clones with CSF3 receptor (CSF3R) mutations in the neutropenic phase, followed by mutations in RUNX1 before AML becomes overt. To investigate how the combination of CSF3 therapy and CSF3R and RUNX1 mutations contributes to AML development, we make use of mouse models, SCN-derived induced pluripotent stem cells (iPSCs), and SCN and SCN-AML patient samples. CSF3 provokes a hyper-proliferative state in CSF3R/RUNX1 mutant hematopoietic progenitors but does not cause overt AML. Intriguingly, an additional acquired driver mutation in Cxxc4 causes elevated CXXC4 and reduced TET2 protein levels in murine AML samples. Expression of multiple pro-inflammatory pathways is elevated in mouse AML and human SCN-AML, suggesting that inflammation driven by downregulation of TET2 activity is a critical step in the malignant transformation of SCN

    PU.1 is linking the glycolytic enzyme HK3 in neutrophil differentiation and survival of APL cells

    No full text
    The transcription factor PU.1 is a master regulator of myeloid differentiation and function. On the other hand, only scarce information is available on PU.1-regulated genes involved in cell survival. We now identified the glycolytic enzyme hexokinase 3 (HK3), a gene with cytoprotective functions, as transcriptional target of PU.1. Interestingly, HK3 expression is highly associated with the myeloid lineage and was significantly decreased in acute myeloid leukemia patients compared with normal granulocytes. Moreover, HK3 expression was significantly lower in acute promyelocytic leukemia (APL) compared with non-APL patient samples. In line with the observations in primary APL patient samples, we observed significantly higher HK3 expression during neutrophil differentiation of APL cell lines. Moreover, knocking down PU.1 impaired HK3 induction during neutrophil differentiation. In vivo binding of PU.1 and PML-RARA to the HK3 promoter was found, and PML-RARA attenuated PU.1 activation of the HK3 promoter. Next, inhibiting HK3 in APL cell lines resulted in significantly reduced neutrophil differentiation and viability compared with control cells. Our findings strongly suggest that HK3 is: (1) directly activated by PU.1, (2) repressed by PML-RARA, and (3) functionally involved in neutrophil differentiation and cell viability of APL cells

    Prognostic gene expression analysis in a retrospective, multinational cohort of 155 multiple myeloma patients treated outside clinical trials

    No full text
    Objectives: Typically, prognostic capability of gene expression profiling (GEP) is studied in the context of clinical trials, for which 50%-80% of patients are not eligible, possibly limiting the generalizability of findings to routine practice. Here, we evaluate GEP analysis outside clinical trials, aiming to improve clinical risk assessment of multiple myeloma (MM) patients. Methods: A total of 155 bone marrow samples from MM patients were collected from which RNA was analyzed by microarray. Sixteen previously developed GEP-based markers were evaluated, combined with survival data, and studied using Cox proportional hazard regression. Results: Gene expression profiling-based markers SKY92 and the PR-cluster were shown to be independent prognostic factors for survival, with hazard ratios and 95% confidence interval of 3.6 [2.0-6.8] (P <.001) and 5.8 [2.7-12.7] (P <.01) for overall survival (OS). A multivariate model proved only SKY92 and the PR-cluster to be independent prognostic factors compared to cytogenetic high-risk patients, the International Staging System (ISS), and revised ISS. A substantial number of high-risk individuals could be further identified when SKY92 was added to the cytogenetic, ISS, or R-ISS. In the cytogenetic standard-risk group, ISS I/II, and R-ISS I/II, 13%, 23%, and 23% of patients with adverse survivals were identified. Conclusions: For the first time, this study confirmed the prognostic value of GEP markers outside clinical trials. Conventional prognostic models to define high-risk MM are improved by the incorporation of GEP markers
    corecore