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Abstract
Background: Multiple gene expression signatures derived from microarray experiments have
been published in the field of leukemia research. A comparison of these signatures with results from
new experiments is useful for verification as well as for interpretation of the results obtained.
Currently, the percentage of overlapping genes is frequently used to compare published gene
signatures against a signature derived from a new experiment. However, it has been shown that
the percentage of overlapping genes is of limited use for comparing two experiments due to the
variability of gene signatures caused by different array platforms or assay-specific influencing
parameters. Here, we present a robust approach for a systematic and quantitative comparison of
published gene expression signatures with an exemplary query dataset.

Results: A database storing 138 leukemia-related published gene signatures was designed. Each
gene signature was manually annotated with terms according to a leukemia-specific taxonomy. Two
analysis steps are implemented to compare a new microarray dataset with the results from
previous experiments stored and curated in the database. First, the global test method is applied
to assess gene signatures and to constitute a ranking among them. In a subsequent analysis step,
the focus is shifted from single gene signatures to chromosomal aberrations or molecular mutations
as modeled in the taxonomy. Potentially interesting disease characteristics are detected based on
the ranking of gene signatures associated with these aberrations stored in the database. Two
example analyses are presented. An implementation of the approach is freely available as web-
based application.

Conclusions: The presented approach helps researchers to systematically integrate the
knowledge derived from numerous microarray experiments into the analysis of a new dataset. By
means of example leukemia datasets we demonstrate that this approach detects related
experiments as well as related molecular mutations and may help to interpret new microarray data.
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Background
Leukemia is a heterogeneous disease with respect to
genetic alterations, which include chromosomal aberra-
tions as well as molecular mutations. Thus far, microarray
technology and in particular gene expression arrays have
been widely used to explore the molecular variation
underlying the biologic and clinical heterogeneity of
leukemia [1]. As a result, biologically and clinically rele-
vant subtypes of leukemia have been characterized based
on their respective gene expression patterns [2-7]. Often,
novel findings were published in the form of lists of dif-
ferentially expressed genes that were referred to as gene
expression signatures. When a new microarray dataset,
herein denoted as query dataset, is analyzed, a thorough
comparison with previously published results of similar
experiments is helpful not only for verification, but also
for identifying associations with different leukemia sub-
types.

Solely relying on gene signatures, two microarray experi-
ments can be compared by simply counting the number
of overlapping genes from each study [8,9]. However,
some studies reported limited overlap between lists of dif-
ferentially expressed genes derived from different microar-
ray studies for the same disease category [10-12]. Even
when using technical replicates for inter- and intra-plat-
form comparisons, the number of overlapping genes can
be small [13]. The reason for these disappointing results is
not necessarily originated in the quality of microarray
technology itself, but rather in the percentage of overlap-
ping genes as being considered as an unsuitable measure-
ment for the reproducibility of microarray experiments
[14]. Based on a statistical model, it has been shown that
even in technical replicate tests using identical samples, it
is highly possible that the lists of the most differentially
expressed genes are very inconsistent [15,16]. Moreover,
published gene signatures are derived from different labo-
ratories, with study groups applying differing array plat-
forms and using different statistical methods to generate
gene lists of interest [17]. Hence, approaches [18,19] that
compute the similarity of a given gene list with a collec-
tion of published gene signatures based on the number of
overlapping genes are likely to miss relevant signatures.

If the microarray intensity values of the query dataset are
available, the search for similar results in a gene signature
database can be based directly on the continuous intensity
data avoiding the need for counting overlapping genes.
Many gene set analysis (GSA) methods for detecting dif-
ferential expression in externally defined sets of genes
have been proposed [20-22] and successfully applied to
gain novel biological insights from microarray data
[23,24]. The externally defined gene sets are usually
derived from pathway databases or from the Gene Ontol-
ogy [25] database, but rarely from published articles [23].

Although it has been shown that GSA methods can be use-
ful for comparison of microarray experiments [26-28],
only few databases contain published gene signatures
[18,19,26,29]. These databases focus on published gene
expression signatures of genetic and chemical perturba-
tions and do not offer an exhaustive collection of results
from of a certain research field like leukemia. Thus, to our
knowledge, these methods were not yet used to systemat-
ically compare a new microarray dataset with previously
published gene signatures.

Any query dataset and the published experiments can be
compared directly based on their intensity values, assum-
ing all required microarray raw datasets are available. For
example, the connectivity map [30] is a database that con-
sists of more than 500 gene expression profiles from
human cell lines treated with perturbagens together with
a pattern-matching algorithm that can be used to mine the
database when a query dataset is given. A similar
approach has recently been proposed to search the Gene
Expression Omnibus array data repository [31] for related
microarray experiments [32]. However, only a small
number of experiments with a simple design on the same
microarray platform were manually selected, reanalyzed
and included into the search strategy. The difficulty of
reanalyzing complex experiments [33,34] with limited
annotation [35] and limited availability of raw data for
historical microarray datasets, and considering intra- and
interlaboratory as well as platform-dependent influences
on data, impede the practical usage of such methods for
an exhaustive search for similar experimental results.

In this paper, we present an approach for a quantitative
comparison of a query dataset with published gene signa-
tures. As a proof-of-concept design we focus on a database
curated manually from numerous leukemia-related exper-
iments using different microarray platforms. The
approach is based on GSA methods together with an accu-
rately annotated database including a simple taxonomy
for leukemia subtypes. By means of investigating two
exemplary datasets, we show that the approach is not only
useful to verify published results, but also to detect puta-
tive linkages between different leukemia entities.

Results and Discussion
Outline
Figure 1 provides an overview of the proposed quantita-
tive literature review process. First, the query dataset
including the normalized microarray data as well as the
studied phenotype variable has to be provided. For each
gene signature in our database, the expression values of
the signature's genes are read in the query dataset and
scored, using the global test method [36], by their ability
to explain the phenotypic variable of the query dataset.
The resulting ranking of signatures, together with the asso-
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ciation between taxonomy terms and signatures, is finally
used to assess terms from our manually defined leukemia
taxonomy. We implemented our approach as a web appli-
cation [37] with special attention to visualization and
exploratory representation of the results.

We initially had considered data from The Minimum
Information about a Microarray Experiment (MIAME)
standard [38], together with the MGED Ontology [39] to
focus on an adequate description on how microarray data
was obtained including many details about laboratory
protocols, array design and samples used. However, these
standards do not necessarily define a common format for
a user-friendly description of gene signatures [40] and
were therefore of limited usefulness for the construction
of our database.

Database for published leukemia gene signatures
A manually curated and annotated database storing pub-
lished gene signatures in a computer processable format is
essential for the presented approach. Currently, our data-
base contains 138 leukemia-related gene signatures that
were manually selected from 37 published research arti-
cles [Additional file 1: Supplemental Table S1]. These 138
signatures contain overall approximately 18000 entries of
accession numbers and microarray probe set identifiers,
representing nearly 6000 different genes (Table 1).

All gene signatures are stored as a collection of platform-
independent accession numbers from the GenBank data-
base [41], thus representing the detected mRNA-
sequences in a given experiment. This process outper-
forms gene-centric approaches based on gene identifiers
like HGNC's gene symbols, since transcripts that have not
been assigned to any approved gene symbol yet can be
stored. In addition, the assignment of transcripts to genes
may undergo changes over time that can be better tracked
when accession numbers are used. Few gene signatures

[42,43] neither specifying accession numbers nor manu-
facturer specific microarray design identifiers that can be
mapped to accession numbers are omitted. Accession
numbers are regularly mapped to gene symbols using Ent-
rez Gene and UniGene databases [44].

For interpretation of a gene signature it is necessary to
store information about the underlying microarray exper-
iment. Depending on the objective of the respective
microarray study assessed for inclusion into the database,
we distinguished between three types of signatures in our
leukemia concept database. Diagnostic signatures report
genes that are differentially expressed between two or
more leukemia subtypes and thus can be used to discrim-
inate certain disease categories. For instance, a gene signa-
ture used to discriminate between acute lymphoblastic
leukemia (ALL) samples with different karyotypes [3] falls
into this category. Prognostic signatures contain genes that
are correlated with reported survival times [45]. The last
type is a remainder group called Other, e.g., including a
signature from a study reporting gene expression changes
associated with certain treatment regimens [46,47]. In
addition to this basic classification, we described the char-
acteristics of the patient samples that were studied in the
microarray experiment by means of a specific taxonomy

Overview of the analysis processFigure 1
Overview of the analysis process. The proposed method relies on a manually curated database of leukemia-related pub-
lished gene signatures annotated with terms from a predefined taxonomy. A new microarray dataset is analyzed in two steps. 
First, each signature is assessed by the global test method to constitute a ranking among the signatures. Secondly, the results 
from the first step are used to assess terms from the leukemia taxonomy that represent leukemia-related genetic aberrations 
and molecular mutations.
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Table 1: Content of the data base for leukemia gene signatures. 

Number of signatures Number of entries

Diagnostic 112 16748

Prognostic 8 646

Other 18 867

Overall 138 18261

138 gene signatures are stored in the database. The size of each 
signature varies between 10 and a few hundred accession numbers.
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for leukemia subtypes. The taxonomy was constructed by
successively adding leukemia entities and mutations that
were studied by experiments in our database. It consists of
three hierarchies. The first one describes different major
groups of leukemia based on the affected cell lineages
(lymphoid, myeloid). The second one describes chromo-
somal aberrations (e.g. translocations, inversions), while
the third one describes single gene mutations (e.g. NPM1,
CEBPA).

Assessment of gene signatures
A gene signature is considered potentially interesting, if
the expression values of its genes in the query dataset are
associated with the phenotype variable. Many different
methods have been proposed to detect such sets of genes
[20-22]. For our application, the global test method [48]
was selected to test the self-contained null hypothesis [49]
for each signature in our database. The resulting p-values
are adjusted by Holm's method [50] to control the Family
Wise Error Rate (FWER) and are used to rank the signa-
tures. Informally, the self-contained null hypothesis states
that there is no correlation in the query dataset between
the phenotype variable and the gene expression values of
any gene in the given signature. Hence, the self-contained
null hypothesis is very restrictive. In terms of reproducibil-
ity of a gene signature, its rejection can be considered as a
minimal requirement. However, the resulting p-values are
a sensible criterion for ranking gene signatures.

The global test has been specified for categorical as well as
continuous phenotype variables including right censored
survival times [36,51] so that gene signatures can be
assessed in a similar way independent of the scale of
measurement of the phenotype variable. In contrast to
many other GSA methods, a parametric approximation of
the null distribution of the global test's test statistic is
available. Hence, the computational effort of testing all
signatures is small and we thus implemented our
approach as a web application.

The p-values derived from the global test are related to sig-
natures as a whole. For subsequent interpretation it is
often useful to inspect which genes within a signature
contributed mostly to the test result. Goeman et al. [36]
used a decomposition of the global test statistic into gene-
wise statistics as shown in equation (1) to generate
informative plots. We adapted these plots and further
ordered the genes by hierarchical clustering with Eucli-
dean distance and average linkage so that groups of genes
that strongly influenced the test statistic can be easily
identified (shown in Figures 2 and 3). The gene-wise sta-
tistics are divided by their standard deviation and plotted
as horizontal bars. The black vertical line indicates their
expectation under the null hypothesis.

Assessment of taxonomy terms
After assessment of all gene signatures in the database, the
focus is shifted from single experiments to leukemia sub-
types and their underlying genetic mutations that are
modeled in the leukemia taxonomy. A taxonomy term
can be considered of relevance with respect to the query
dataset, if the ranks of the gene signatures associated with
that term are low. For each term, the one-sided Mann-
Whitney U-test is used to compare the ranks of associated
signatures to the ranks of all other signatures. Due to the
explorative nature of these tests, the resulting p-values are
not adjusted for multiple testing. Depending on whether
the differentiation of leukemia subtypes or survival times
were studied in the query dataset, only Diagnostic signa-
tures or Prognostic signatures were used for the described
assessment of taxonomy terms.

The taxonomy terms together with the p-values are useful
for exploring relations between the studied phenotype in
the query dataset and leukemia subtypes with their spe-
cific mutations based on the knowledge gathered from
many microarray studies. A low p-value of a term indicates
that genes known to be associated with the leukemia
entity represented by the term are correlated with the phe-
notype variable in the given query dataset.

Example analyses
Differential expression between acute leukemia types
Golub et al. [2] published a signature of 50 genes that
were differentially expressed between acute myeloid
leukemia (AML) and acute lymphoblastic leukemia
(ALL). Following that approach, van Delft et al. [52] stud-
ied differences in gene expression between pediatric AML
and ALL patient samples and also presented a list of differ-
entially expressed genes. About their gene signature, van
Deft et al. stated: "This gene list is almost entirely different
from a previously published set of genes that discriminate ALL
from AML (Golub et al.), with only LYN and ARHG in com-
mon between these two lists." However, they demonstrated
that their AML and ALL samples could be distinguished
based on the Golub et al. signature, thus any missing
agreement of their results was probably due to the
number of overlapping genes being an unsuitable meas-
urement.

To run our literature comparison, the dataset from van
Delft et al. (59 ALL and 18 AML samples) was normalized
using the Variance-Stabilizing Normalization method
[53] and used as query dataset in the following example.
Besides the gene signature described above, in their
accompanying supplemental material van Delft et al. pub-
lished an additional gene signature discriminating AML
from ALL generated by using a different statistical gene
selection method. These two signatures as well as the
Golub et al. signature are the sole AML/ALL gene signa-
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NPM1 gene signature from Verhaak et alFigure 2
NPM1 gene signature from Verhaak et al. Verhaak et al. [57] published a NPM1 signature of 68 accession numbers that 
correspond to 40 genes. These genes were measured by 89 probe sets in the query dataset. A bar is plotted for each probe 
representing the value contributed by that probe set to the global test statistic. The expectation of these values under the null 
hypothesis of no correlation between NPM1 status and gene expression in the query dataset is indicated by the vertical black 
line. Overall, most genes reported by Verhaak et al. were also highly correlated with the NPM1 mutation status in our dataset. 
The colors indicate the direction of regulation. E.g., CD200 and BAALC were downregulated in NPM1-mutated samples, while 
most of the HOXA@ and HOXB@ genes showed increased expression in NPM1-mutated AML samples with a normal karyo-
type.

upregulated in NPM1−mutated samples
downregulated in NPM1−mutated samples

APP

APP

LOC404266

HOXB3

HOXB6

NKX2−3

HOXA5

HOXA9

HOXA9

HOXA10

MEIS1

HOXA3

MEIS1

MEIS1

FAM105A

GNG2

TRH

SPARC

SPARC

ITM2C

CCND2

CCND2

CCND2

CCND2

MN1

BAALC

BAALC

CD34

CD200

CD200

DMXL2

DMXL2

MPP7

C10orf54

C10orf54

HOXB9

HOXB7

HOXB7

HOXA7

FLJ27365

SMC4

SMC4

SMC4

UGCGL2

UGCGL2

UGCGL2

GNG2

GNG2

HOXB4

HOXB7

HOXB9

HOXA3

PDGFD

LOC404266

LOC404266

HOXB3

FLJ27365

PBX3

CPNE8

APP

PRDM16

FLJ27365

COL4A5

UGCGL2

HOXB6

UGCGL2

NCOA6

GNG2

NCOA6

TMEM65

MPP7

MPP7

MPP7

TMEM65

CPNE8

CPNE8

PDGFD

PBX3

HOXA4

HOXA10

HOXA7

HOXA7

HOXB2

HOXB5

HOXB5

LOC404266

LOC404266

COL4A5

PRDM16

gene−wise test statistics

0 20 40 60 80 100 120

0 20 40 60 80 100 120



BMC Bioinformatics 2009, 10:422 http://www.biomedcentral.com/1471-2105/10/422

Page 6 of 11
(page number not for citation purposes)

t(11q23)/MLL gene signature from Ross et alFigure 3
t(11q23)/MLL gene signature from Ross et al. Gene-wise test statistics are shown for a subset of 85 probe sets allocated 
to genes as reported by Ross et al. [59] to be associated with translocation t(11q23)/MLL. The full plot with all 185 probe sets 
that could be mapped to the signature from Ross et al. (100 accession numbers) is provided online [Additional file 1: Supple-
mental Figure S1]. The high correlation of the expression pattern of the Ross et al. signature with the NPM1 status in the query 
dataset was mainly caused by the TALE genes (MEIS1 and PBX3) and by some HOXA@ family genes. This was characteristic for 
the t(11q23)/MLL signatures in our database and is consistent with results reported in [61].
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tures stored in our database. Applying the global test to all
gene signatures based on the dataset from van Delft et al.
with the AML/ALL status as phenotype variable leads to
many small p-values, because differences in gene expres-
sion between AML and ALL are distinctive. Nevertheless,
the ranking remains reasonable. The signatures from van
Delft et al. occupied the ranks one and three while the sig-
nature obtained by Golub and colleagues had the second
position [Additional file 1: Supplemental Table S2]. The
taxonomy terms "ALL" and "AML" had the first and sec-
ond rank [Additional file 1: Supplemental Table S3].

Although van Delft et al. used a different microarray plat-
form than Golub et al. and the overlap of the gene signa-
tures was small, our GSA based approach successfully
detected the signature from Golub et al. as potentially
interesting and placed it at the second position. Intrigu-
ingly, one signature published in the article by van Delft
et al. [52] and thus generated from the query dataset itself
ranked below the Golub et al. signature. That may be
caused by the impact of different data analysis procedures
on gene lists [17,54]. Differences between adult and pedi-
atric patients seem not to have a strong influence in this
analysis.

NPM1 mutation in AML with normal karyotype
In a recent multi-center study, 251 gene expression pro-
files of AML specimens with normal karyotype were gen-
erated to delineate differential gene expression signatures
corresponding to distinct gene mutations [55]. 138 of the
251 cases had a confirmed nucleophosmin gene (NPM1)
mutation. The raw data can be accessed through the Gene
Expression Omnibus database [31] (GSE15434). We
applied the Robust Multichip Average algorithm [56] to
normalize the data. Then, we used our approach to com-
pare the differences in gene expression between NPM1-
mutated and NPM1 wild type cases observed in this new
dataset with previously reported results from our data-
base.

First, all 138 gene signatures in the database were assessed
by the global test and ranked according to their p-values.
8 signatures were annotated with the term "NPM1
mutated" from our taxonomy. These 8 signatures ranked
among the first 21 signatures as shown in Table 2 and had
highly significant p-values (FWER < 0.01) due to the large
number of samples and the strength of changes in gene
expression induced by NPM1 mutations. The first ranked
signature was a NPM1 signature published by Verhaak et
al. [57]. Figure 2 shows the contribution of single genes
reported by Verhaak et al. on the global test result. In par-
ticular, many reported HOXA and HOXB family cluster
genes as well as MEIS1 were also highly correlated with
the NPM1 status in our query dataset.

The result of the subsequent assessment of taxonomy
terms is given in Table 3. Besides the NPM1 mutation, the
translocation t(11q23)/MLL on the second-ranked posi-
tion also had a noticeable low p-value [58]. This indicates
that t(11q23)/MLL partially affects the differential expres-
sion of the same genes as the NPM1 mutation in our query
dataset. Figure 3 provides an insight into the expression
patterns of the genes reported by Ross et al. [59] (rank 9).
Apparently, the differential expression of some HOX fam-
ily cluster genes were affected by both the MLL gene rear-
rangement and the NPM1 mutations. Thus, we verified
the published NPM1 signatures by means of the new data-
set and detected potentially new associations to other
chromosomal aberrations as well.

Conclusions
The presented approach allows a comprehensive and
quantitative comparison of experimental microarray data
with previously published results across different array
platforms and microarray designs. The database is
designed as an open structure to be independent from
microarray manufacturer or differing chip designs. By
means of an exemplary research topic, i.e. differential
gene expression in leukemia subtypes, we have demon-
strated that the approach is not only useful to verify pub-
lished results but may also detect novel associations
between genetic aberrations and gene mutations that
affect the same biological processes and cellular pathways.
It is expected that the same approach can also be extended
to other areas of interest, such as querying signatures for
other cancer types, microRNAs, DNA or histone methyla-
tion of promoter regions, or distinct signaling pathways.
An implementation of our approach as well as the data-
base itself and further example analyses are freely availa-
ble on our website [37].

Methods
Global test
Goeman et al. give a general derivation of their global test
as a score test in [48]. Here, the phenotype variable was
binary in both presented examples, so that the global test
could be specified within a logistic regression model as in
[36] with test statistic

X = (xij) denotes a n × m matrix of gene expression values

of n arrays and m genes (all genes from the query dataset
that are elements of the tested gene signature). y is the vec-

tor of the n observed phenotypes. μ is the expectation and

σ the standard deviation of the phenotype variable, which
are supposed to be known in this section. S has expecta-

S
m

y XX yt t= − −1
( ) ( ).m m
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Table 2: Ranking of gene signatures. 

Rank Gene signature Taxonomy terms

1 Verhaak et al., Haematologica, 2009, AML, NPM1 NPM1 mutated

2 Verhaak et al., Haematologica, 2009, AML, NPM1 and FLT3-ITD -

3 Verhaak et al., Haematologica, 2009, AML, NPM1 without FLT3-ITD NPM1 mutated

4 Verhaak et al., Haematologica, 2009, AML, FLT3-ITD or FLT3-TKD FLT3

5 Alcalay et al., Blood, 2005, AML, NPM1 NPM1 mutated

6 Verhaak et al., Haematologica, 2009, AML, FLT3-ITD FLT3-ITD, FLT3

7 Alcalay et al., Blood, 2005, AML, NPM1, NPM1 mutated

8 Valk et al., N Engl J Med, 2004, Classification of AML subtypes -

9 Ross et al., Blood, 2004, AML and ALL, t(11q23)/MLL t(11q23)/MLL, Chrom. aberration

10 Mullighan et al., Leukemia, 2007, AML, NPM1 NPM1 mutated

11 Mullighan et al., Leukemia, 2007, AML, NPM1 NPM1 mutated

12 Verhaak et al., Haematologica, 2009, AML, del(7q) del(7q)

13 Mullighan et al., Leukemia, 2007, AML, NPM1 NPM1 mutated

14 Verhaak et al., Haematologica, 2009, AML, t(15;17) t(15;17), Chrom. aberration

15 Marcucci et al., J Clin Oncol, 2008, AML, CEBPA CEBPA

16 Stirewalt et al., Genes Chromosomes Cancer, 2008, AML AML, Leukemia

17 Valk et al., N Engl J Med, 2004, AML, CEBPA CEBPA

18 Ross et al., Blood, 2003, B-ALL, t(11q23)/MLL -

19 van Delft et al., Br J Haematol, 2005, AML, t(11q23)/MLL t(11q23)/MLL, Chrom. aberration

20 Valk et al., N Engl J Med, 2004, AML, cluster without predominant characteristics -

21 Verhaak et al., Blood, 2005, AML, NPM1 NPM1 mutated

22 Langer et al., Blood, 2008, AML, BAALC -

23 van Delft et al., Br J Haematol, 2005, AML, t(11q23)/MLL t(11q23)/MLL, Chrom. aberration

24 Armstrong et al., Nat Genet, 2002, ALL, t(11q23)/MLL t(11q23)/MLL, Chrom. aberration

25 Valk et al., N Engl J Med, 2004, AML, mostly EVI1 -

� � �

Each of the 138 gene signatures was tested for differential expression between NPM1-mutated and NPM1 wild type cases in the query dataset and 
ranked according to its p-value. All 8 of the 138 signatures associated with the taxonomy term "NPM1 mutated" ranked among the first 21 
positions. The complete ranking of all signatures is available in the supplement [Additional file 1: Supplemental Table S4].
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tion ES = tr(XXt) and variance VarS ≈ tr(XXt)2

under the null hypothesis. S can be written as a sum of
gene-wise terms:

For better comparability these m gene-wise terms were
divided by their standard deviation before they were used
to create the bar plots shown in Figures 2 and 3.

The null distribution of S is approximated by a series
expansion in chi-square distribution functions as imple-
mented in the R package globaltest [36]. Very small p-val-
ues (< 10-12) may not be numerically reliable. For that
reason, only p-values up to 10-12 are used to rank signa-

tures whereas the standardized test statistic  = (S - ES)/
VarS is used to rank remaining gene signatures with p < 10-

12.

Mann-Whitney U-test

The assessment of the taxony terms is based on the rank-
ing derived from the global test of all n = 112 Diagnostic
signatures. Let ri denote the rank of the i-th signature and

Tj is the set of all signatures associated with taxonomy

term tj. For each term in our taxonomy with at least one

associated gene signature, the one-sided Mann-Whitney
U-test is used to test the null hypothesis, that the distribu-
tion of the global test's p-values of the signatures in Tj dif-

fer by a location shift of c ≥ 0 from the distribution of p-
values of the signatures that are not in Tj. The test statistic

Wj =  is standardized and a normal approxima-

tion with continuity correction is used to calculate p-val-
ues. This results in 34 dependet p-values, which are not
corrected for multiple testing due to the explorative nature
of the taxonomy analysis.

Implementation
We used Axis2 to implement a Web Service interface to
our PostgreSQL database that stores the gene signatures.
The taxonomy was modeled in the Web Ontology Lan-
guage (OWL). All tests were computed within R/Biocon-
ductor [60] and the globaltest package [36]. Java Server
Pages were used to realize the web-based graphical user
interface.
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Additional file 1
Supplementary information. Detailed information about the content of 
the leukemia gene signature database, complete rankings of gene signa-
tures and taxonomy terms for both example analyses presented in the arti-
cle and additional information about the stability of the taxonomy term 
ranking.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-422-S1.PDF]

rkk Tj∈∑

Table 3: Ranking of taxonomy terms. 

Rank unadjusted p-value Term Number of signatures Number of articles

1 < 0.001 NPM1 mutated 8 4

2 0.028 t(11q23)/MLL 9 6

3 0.071 CEBPA 7 5

4 0.087 del(7q) 1 1

5 0.113 FLT3 6 3

� � � � �

Taxonomy terms were assessed based on the ranking of the gene signatures associated with those terms. In case of the example dataset examining 
NPM1-mutations, the 8 NPM1 signatures that were extracted from 4 different articles significantly occupied low ranks. The low p-value of 
translocation t(11q23)/MLL indicates a putative relation between this translocation and the studied NPM1-mutation. The full ranking of all taxonomy 
terms is provided in the supplement [Additional file 1: Supplemental Table S5]. The ranking remained reasonably stable when (i) half of the arrays 
were excluded from the analysis [Additional file 1: Supplemental Figure S2] and also when (ii) half of the gene signatures were excluded from the 
analysis [Additional file 1: Supplemental Figure S3].
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