48 research outputs found

    The Computational Power of Minkowski Spacetime

    Full text link
    The Lorentzian length of a timelike curve connecting both endpoints of a classical computation is a function of the path taken through Minkowski spacetime. The associated runtime difference is due to time-dilation: the phenomenon whereby an observer finds that another's physically identical ideal clock has ticked at a different rate than their own clock. Using ideas appearing in the framework of computational complexity theory, time-dilation is quantified as an algorithmic resource by relating relativistic energy to an nnth order polynomial time reduction at the completion of an observer's journey. These results enable a comparison between the optimal quadratic \emph{Grover speedup} from quantum computing and an n=2n=2 speedup using classical computers and relativistic effects. The goal is not to propose a practical model of computation, but to probe the ultimate limits physics places on computation.Comment: 6 pages, LaTeX, feedback welcom

    Gravitational Redshift, Equivalence Principle, and Matter Waves

    Full text link
    We review matter wave and clock comparison tests of the gravitational redshift. To elucidate their relationship to tests of the universality of free fall (UFF), we define scenarios wherein redshift violations are coupled to violations of UFF ("type II"), or independent of UFF violations ("type III"), respectively. Clock comparisons and atom interferometers are sensitive to similar effects in type II and precisely the same effects in type III scenarios, although type III violations remain poorly constrained. Finally, we describe the "Geodesic Explorer," a conceptual spaceborne atom interferometer that will test the gravitational redshift with an accuracy 5 orders of magnitude better than current terrestrial redshift experiments for type II scenarios and 12 orders of magnitude better for type III.Comment: Work in progress. 11 page

    Twin paradox and space topology

    Get PDF
    If space is compact, then a traveller twin can leave Earth, travel back home without changing direction and find her sedentary twin older than herself. We show that the asymmetry between their spacetime trajectories lies in a topological invariant of their spatial geodesics, namely the homotopy class. This illustrates how the spacetime symmetry invariance group, although valid {\it locally}, is broken down {\it globally} as soon as some points of space are identified. As a consequence, any non--trivial space topology defines preferred inertial frames along which the proper time is longer than along any other one.Comment: 6 pages, latex, 3 figure

    Charged pions from Ni on Ni collisions between 1 and 2 AGeV

    Get PDF
    Charged pions from Ni + Ni reactions at 1.05, 1.45 and 1.93 AGeV are measured with the FOPI detector. The mean π±\pi^{\pm} multiplicities per mean number of participants increase with beam energy, in accordance with earlier studies of the Ar + KCl and La + La systems. The pion kinetic energy spectra have concave shape and are fitted by the superposition of two Boltzmann distributions with different temperatures. These apparent temperatures depend only weakly on bombarding energy. The pion angular distributions show a forward/backward enhancement at all energies, but not the Θ=900\Theta = 90^0 enhancement which was observed in case of the Au + Au system. These features also determine the rapidity distributions which are therefore in disagreement with the hypothesis of one thermal source. The importance of the Coulomb interaction and of the pion rescattering by spectator matter in producing these phenomena is discussed
    corecore