166 research outputs found

    The structural design for a "canted cosine-theta" Superconducting dipole coil and magnet structure-CCT

    Get PDF
    The Superconducting Magnet Group, at Lawrence Berkeley National Laboratory (LBNL), has been developing a canted cosine-theta (CCT) superconducting dipole coil as well as the coil's supporting magnet structure. This contribution reports on the progress in the development of the coil's winding mandrel and its fabrication options. A comprehensive study of the coil's Lorentz forces was performed to validate the winding mandrel's "stress interception" attributes. The design of the external structure and the application of the "Bladder & Key" technology is also discussed. Additionally, the application of these studies to a curved ion-therapy CCT dipole magnet is reported

    Characterization of insulating coatings for wind-and-react coil fabrication

    Get PDF
    Electrical insulation breakdown between conductor and coil parts and structures is a limiting factor in the performance of high-field magnets. We have evaluated various insulation coatings for possible application in both Nb Sn and Bi-2212 coil fabrication. Such coatings must be robust to maintain structural integrity and provide adequate voltage standoff after the wind-and-react coil fabrication process. Such processes are characterized by reaction temperatures of 650°C in an inert atmosphere for Nb Sn and 890°C in a pure oxygen atmosphere for Bi-2212, and down to cryogenic temperatures when coils are in service. We present a method of testing standardized samples and report the performance characteristics of oxide layers produced (or applied) by plasma-spray, surface conversion, and "paintable" coatings in common areas of voltage breakdown in coil parts. We also address material compatibility and durability during high-temperature heat treatment and cryogenic shock. Suitable coatings selected in the testing process will be instrumental in improving the performance of future wind-and-react coils. © 2014 AIP Publishing LLC. 3

    Superconducting ECR ion source: From 24-28 GHz SECRAL to 45 GHz fourth generation ECR.

    Get PDF
    The development of superconducting ECR source with higher magnetic fields and higher microwave frequency is the most straight forward path to achieve higher beam intensity and higher charge state performance. SECRAL, a superconducting third generation ECR ion source, is designed for 24-28 GHz microwave frequency operation with an innovative magnet configuration of sextupole coils located outside the three solenoids. SECRAL at 24 GHz has already produced a number of record beam intensities, such as 40Ar12+ 1.4 emA, 129Xe26+ 1.1 emA, 129Xe30+ 0.36 emA, and 209Bi31+ 0.68 emA. SECRAL-II, an upgraded version of SECRAL, was built successfully in less than 3 years and has recently been commissioned at full power of a 28 GHz gyrotron and three-frequency heating (28 + 45 + 18 GHz). New record beam intensities for highly charged ion production have been achieved, such as 620 eμA 40Ar16+, 15 eμA 40Ar18+, 146 eμA 86Kr28+, 0.5 eμA 86Kr33+, 53 eμA 129Xe38+, and 17 eμA 129Xe42+. Recent beam test results at SECRAL and SECRAL II have demonstrated that the production of more intense highly charged heavy ion beams needs higher microwave power and higher frequency, as the scaling law predicted. A 45 GHz superconducting ECR ion source FECR (a first fourth generation ECR ion source) is being built at IMP. FECR will be the world's first Nb3Sn superconducting-magnet-based ECR ion source with 6.5 T axial mirror field, 3.5 T sextupole field on the plasma chamber inner wall, and 20 kW at a 45 GHz microwave coupling system. This paper will focus on SECRAL performance studies at 24-28 GHz and technical design of 45 GHz FECR, which demonstrates a technical path for highly charged ion beam production from 24 to 28 GHz SECRAL to 45 GHz FECR

    Canted-cosine-theta magnet (CCT)-A concept for high field accelerator magnets

    Get PDF
    Canted-Cosine-Theta (CCT) magnet is an accelerator magnet that superposes fields of nested and tilted solenoids that are oppositely canted. The current distribution of any canted layer generates a pure harmonic field as well as a solenoid field that can be cancelled with a similar but oppositely canted layer. The concept places windings within mandrel's ribs and spars that simultaneously intercept and guide Lorentz forces of each turn to prevent stress accumulation. With respect to other designs, the need for pre-stress in this concept is reduced by an order of magnitude making it highly compatible with the use of strain sensitive superconductors such as Nb3Sn or HTS. Intercepting large Lorentz forces is of particular interest in magnets with large bores and high field accelerator magnets like the one foreseen in the future high energy upgrade of the LHC. This paper describes the CCT concept and reports on the construction of CCT1 a "proof of principle" dipole
    • …
    corecore