17 research outputs found

    Olfactory and gustatory dysfunction in patients with autoimmune encephalitis

    Get PDF
    OBJECTIVE: To test the hypothesis that olfactory (OF) and gustatory function (GF) is disturbed in patients with autoimmune encephalitides (AE). METHODS: The orthonasal OF was tested in 32 patients with AE and 32 age- and sex-matched healthy controls (HC) with the standardized Threshold Discrimination Identification (TDI) score. This validated olfactory testing method yields individual scores for olfactory threshold (T), odor discrimination (D), and identification (I), along with a composite TDI score. The GF was determined by the Taste Strip Test (TST). RESULTS: Overall, 24/32 (75%) of patients with AE, but none of 32 HC (p < 0.001) had olfactory dysfunction in TDI testing. The results of the threshold, discrimination and identification subtests were significantly reduced in patients with AE compared to HC (all p < 0.001). Assessed by TST, 5/19 (26.3%) of patients with AE, but none of 19 HC presented a significant limitation in GF (p < 0.001). The TDI score was correlated with the subjective estimation of the olfactory capacity on a visual analog scale (VAS; r(s) = 0.475, p = 0.008). Neither age, sex, modified Rankin Scale nor disease duration were associated with the composite TDI score. CONCLUSIONS: This is the first study investigating OF and GF in AE patients. According to unblinded assessment, patients with AE have a reduced olfactory and gustatory capacity compared to HC, suggesting that olfactory and gustatory dysfunction are hitherto unrecognized symptoms in AE. Further studies with larger number of AE patients would be of interest to verify our results

    Frequency of exercise-induced ST-T-segment deviations and cardiac arrhythmias in recreational endurance athletes during a marathon race: results of the prospective observational Berlin Beat of Running study

    Get PDF
    OBJECTIVES: While regular physical exercise has many health benefits, strenuous physical exercise may have a negative impact on cardiac function. The 'Berlin Beat of Running' study focused on feasibility and diagnostic value of continuous ECG monitoring in recreational endurance athletes during a marathon race. We hypothesised that cardiac arrhythmias and especially atrial fibrillation are frequently found in a cohort of recreational endurance athletes. The main secondary hypothesis was that pathological laboratory findings in these athletes are (in part) associated with cardiac arrhythmias. DESIGN: Prospective observational cohort study including healthy volunteers. SETTING AND PARTICIPANTS: One hundred and nine experienced marathon runners wore a portable ECG recorder during a marathon race in Berlin, Germany. Athletes underwent blood tests 2-3 days prior, directly after and 1-2 days after the race. RESULTS: Overall, 108 athletes (median 48 years (IQR 45-53), 24% women) completed the marathon in 249±43 min. Blinded ECG analysis revealed abnormal findings during the marathon in 18 (16.8%) athletes. Ten (9.3%) athletes had at least one episode of non-sustained ventricular tachycardia, one of whom had atrial fibrillation; eight (7.5%) individuals showed transient ST-T-segment deviations. Abnormal ECG findings were associated with advanced age (OR 1.11 per year, 95% CI 1.01 to 1.23), while sex and cardiovascular risk profile had no impact. Directly after the race, high-sensitive troponin T was elevated in 18 (16.7%) athletes and associated with ST-T-segment deviation (OR 9.9, 95% CI 1.9 to 51.5), while age, sex and cardiovascular risk profile had no impact. CONCLUSIONS: ECG monitoring during a marathon is feasible. Abnormal ECG findings were present in every sixth athlete. Exercise-induced transient ST-T-segment deviations were associated with elevated high-sensitive troponin T (hsTnT) values. TRIAL REGISTRATION: ClinicalTrials.gov NCT01428778; Results

    Cardiac Imaging After Ischemic Stroke or Transient Ischemic Attack

    No full text
    Purpose of review!#!Cardiac imaging after ischemic stroke or transient ischemic attack (TIA) is used to identify potential sources of cardioembolism, to classify stroke etiology leading to changes in secondary stroke prevention, and to detect frequent comorbidities. This article summarizes the latest research on this topic and provides an approach to clinical practice to use cardiac imaging after stroke.!##!Recent findings!#!Echocardiography remains the primary imaging method for cardiac work-up after stroke. Recent echocardiography studies further demonstrated promising results regarding the prediction of non-permanent atrial fibrillation after ischemic stroke. Cardiac magnetic resonance imaging and computed tomography have been tested for their diagnostic value, in particular in patients with cryptogenic stroke, and can be considered as second line methods, providing complementary information in selected stroke patients. Cardiac imaging after ischemic stroke or TIA reveals a potential causal condition in a subset of patients. Whether systematic application of cardiac imaging improves outcome after stroke remains to be established

    beta-adrenergic receptor stimulation selectively inhibits IL-12p40 release in microglia

    No full text
    The cytokine interleukin-12 (IL-12) is mainly produced in response to bacterial or parasitic infections. We examined the capacity of mouse brain microglia to release IL-12 forms upon challenge with bacterial lipopolysaccharide (LPS) and studied its modulation by sympathomimetics. LPS evoked the release of IL-12p40 whereas the heterodimeric form, IL-12p70 was virtually undetectable. Sympathomimetics such as salbutamol dose-dependently inhibited IL-12p40 release, whereas the production of IL-6, TNF{alpha} and MIP-1α was only marginally influenced. The inhibitory effect of salbutamol could be abolished by {beta}-antagonists, such as oxprenolol. The cAMP-elevating agent forskolin could mimic the effects of {beta}-agonists, indicating that IL-12p40 release inhibition involves intracellular cAMP accumulation. While microglial IL-12p40 may play a role in the regulation of IL-12p70 bioactivity, microglial release is itself modulated by IL-12p70. Recombinant IL-12p70 was found to enhance the LPS-evoked release of MIP-1α and to have a biphasic effect on both TNFα and MIP-1{alpha} with release augmentation at lower and attenuation at higher doses. Finally, no functional correlation was found between the release of IL-12p40 and the induction of Kv1.3 potassium channels, another marker of microglial activation. Taken together, {beta}2-adrenoreceptor-mediated effects on microglial cyto- and chemokine release via cAMP accumulation could modulate inflammatory cascades during bacterial infections

    Interferon-γ differentially modulates the release of cytokines and chemokines in lipopolysaccharide- and pneumococcal cell wall-stimulated mouse microglia and macrophages

    No full text
    During bacterial infections of the CNS, activated microglia could support leucocyte recruitment to the brain through the synthesis of cyto- and chemokines. In turn, invading leucocytes may feedback on microglial cells to influence their chemokine release pattern. Here, we analyzed the capacity of interferon-{gamma} (IFN{gamma}) to serve as such a leucocyte-to-microglia signal. Production of cyto- and chemokines was stimulated in mouse microglia cultures by treatments with lipopolysaccharide (LPS) from Gram-negative Escherichia coli or cell walls from Gram-positive Streptococcus pneumoniae (PCW). IFN{gamma} presence during the stimulation (0.1-100 ng/mL) modulated the patterns of LPS- and PCW-induced cyto- and chemokine release in a dose-dependent, potent and complex manner. While amounts of TNF{alpha} and IL-6 remained nearly unchanged, IFN{gamma} enhanced the production of IL-12, MCP-1 and RANTES, but attenuated that of KC, MIP-1{alpha} and MIP-2. Release modulation was obtained with IFN{gamma} preincubation (treatment of cells before LPS or PCW administration), coincubation and even delayed addition to an ongoing LPS or PCW stimulation. Together the changes observed for the microglial chemokine release under IFN{gamma} would shift the chemoattractive profile from favouring neutrophils to a preferential attraction of monocytes and T lymphocyte populations - as actually seen during the course of bacterial meningitis. The findings support the view of activated microglia as a major intrinsic source for an instant production of a variety of chemokines and suggest that leucocyte-derived IFN{gamma} could potentially regulate the microglial chemokine release pattern

    The protein tyrosine kinase inhibitor AG126 prevents the massive microglial cytokine induction by pneumococcal cell walls

    No full text
    Central nervous system (CNS) infections caused by Streptococcus pneumoniae still have a disastrous outcome. Underlying immunological and CNS cellular events are largely enigmatic. We used pneumococcal cells walls (PCW) to investigate microglial responses as these cells are prominent sensors and effectors during neuropathological changes. PCW stimulation of mouse microglia in vitro evoked the release of the cyto- and chemokines, TNF-{alpha}, IL-6, IL-12, KC, MCP-1, MIP-1{alpha}, MIP-2 and RANTES as well as soluble TNF receptor II, a potential TNF-{alpha} antagonist. The release induction followed extremely steep dose-response relations, and short exposure periods (15 min) were already sufficient to trigger substantial responses. PCW signaling controlling the release depended on both p38 and p42/p44 (ERK2/ERK1) MAP kinase activities. The kinase inhibitor, tyrphostin AG126 prevented the PCW-inducible phosphorylation of p42/p44(MAPK), potently blocked cytokine release and drastically reduced the bioavailable TNF-{alpha}, since it only marginally affected the release of soluble TNF receptors. Moreover, in an in vivo model of pneumococcal meningitis, AG126 significantly attenuated the PCW-induced leukocyte influx to the cerebrospinal fluid. The findings imply that pneumococcal CNS infection can cause a rapid and massive microglial activation and that ERK/MAPK pathway(s) are potential targets for pharmacological interventions

    Biochemical analysis of proteasomes from mouse microglia: Induction of immunoproteasomes by interferon-gamma and lipopolysaccharide

    No full text
    The 20S proteasome is a multicatalytic threonine protease and serves to process peptides that are subsequently presented as antigenic epitopes by MHC class I molecules. In the brain, microglial cells are the major antigen presenting cells and they respond sensitive to pathologic events. We used cultured mouse microglia and a microglial cell line, the BV-2 line, as a model to study the correlation between microglial activation parameters and structural plasticity of the 20S/26S proteasome. Lipopolysaccharide (LPS)- or interferon-γ (IFN-γ)-stimulated microglia or BV-2 cells exhibit properties of activated microglia such as high levels of TNF{alpha} and IL-6 release. In response to IFN-{gamma} or LPS, three constitutive {beta} subunits ({beta}1/Delta, {beta}2/MC14, {beta}5/MB1) were replaced by the immunoproteasome subunits i{beta}1/LMP2, i{beta}2/MECL-1, and i{beta}5/LMP7, indicating that activated microglia adapts its proteasomal subunit composition to the requirements of an optimized MHC class I epitope processing. Induction of immunoproteasomes in BV-2 cells was solely provoked by IFN-γ, but not by LPS. Moreover, LPS (but not IFN-{gamma}) triggered the expression of a novel protein of ~50 kD as part of the proteasome activator PA700, that is the substrate-recognizing and unfolding unit of the 26S proteasome. These results indicate that both the 20S core protease as well as the proteasome activator PA700 are targets of modulatory subunit replacements or transient association of regulatory components in the course of microglial activation

    Heart and brain interaction in patients with heart failure: overview and proposal for a taxonomy. A position paper from the Study Group on Heart and Brain Interaction of the Heart Failure Association

    No full text
    Heart failure (HF) is a complex clinical syndrome with multiple interactions between the failing myocardium and cerebral (dys-)functions. Bi-directional feedback interactions between the heart and the brain are inherent in the pathophysiology of HF: (i) the impaired cardiac function affects cerebral structure and functional capacity, and (ii) neuronal signals impact on the cardiovascular continuum. These interactions contribute to the symptomatic presentation of HF patients and affect many co-morbidities of HF. Moreover, neuro-cardiac feedback signals significantly promote aggravation and further progression of HF and are causal in the poor prognosis of HF. The diversity and complexity of heart and brain interactions make it difficult to develop a comprehensive overview. In this paper a systematic approach is proposed to develop a comprehensive atlas of related conditions, signals and disease mechanisms of the interactions between the heart and the brain in HF. The proposed taxonomy is based on pathophysiological principles. Impaired perfusion of the brain may represent one major category, with acute (cardio-embolic) or chronic (haemodynamic failure) low perfusion being sub-categories with mostly different consequences (i.e. ischaemic stroke or cognitive impairment, respectively). Further categories include impairment of higher cortical function (mood, cognition), of brain stem function (sympathetic over-activation, neuro-cardiac reflexes). Treatment-related interactions could be categorized as medical, interventional and device-related interactions. Also interactions due to specific diseases are categorized. A methodical approach to categorize the interdependency of heart and brain may help to integrate individual research areas into an overall picture. © 2017 The Authors. European Journal of Heart Failure © 2017 European Society of Cardiolog

    Recurrent Stroke with Rivaroxaban Compared with Aspirin According to Predictors of Atrial Fibrillation: Secondary Analysis of the NAVIGATE ESUS Randomized Clinical Trial

    No full text
    Importance: The NAVIGATE ESUS randomized clinical trial found that 15 mg of rivaroxaban per day does not reduce stroke compared with aspirin in patients with embolic stroke of undetermined source (ESUS); however, it substantially reduces stroke risk in patients with atrial fibrillation (AF). Objective: To analyze whether rivaroxaban is associated with a reduction of recurrent stroke among patients with ESUS who have an increased risk of AF. Design, Setting, and Participants: Participants were stratified by predictors of AF, including left atrial diameter, frequency of premature atrial contractions, and HAVOC score, a validated scheme using clinical features. Treatment interactions with these predictors were assessed. Participants were enrolled between December 2014 and September 2017, and analysis began March 2018. Intervention: Rivaroxaban treatment vs aspirin. Main Outcomes and Measures: Risk of ischemic stroke. Results: Among 7112 patients with a mean (SD) age of 67 (9.8) years, the mean (SD) HAVOC score was 2.6 (1.8), the mean (SD) left atrial diameter was 3.8 (1.4) cm (n = 4022), and the median (interquartile range) daily frequency of premature atrial contractions was 48 (13-222). Detection of AF during follow-up increased for each tertile of HAVOC score: 2.3% (score, 0-2), 3.0% (score, 3), and 5.8% (score, >3); however, neither tertiles of the HAVOC score nor premature atrial contractions frequency impacted the association of rivaroxaban with recurrent ischemic stroke (P for interaction =.67 and.96, respectively). Atrial fibrillation annual incidence increased for each tertile of left atrial diameter (2.0%, 3.6%, and 5.2%) and for each tertile of premature atrial contractions frequency (1.3%, 2.9%, and 7.0%). Among the predefined subgroup of patients with a left atrial diameter of more than 4.6 cm (9% of overall population), the risk of ischemic stroke was lower among the rivaroxaban group (1.7% per year) compared with the aspirin group (6.5% per year) (hazard ratio, 0.26; 95% CI, 0.07-0.94; P for interaction =.02). Conclusions and Relevance: The HAVOC score, left atrial diameter, and premature atrial contraction frequency predicted subsequent clinical AF. Rivaroxaban was associated with a reduced risk of recurrent stroke among patients with ESUS and moderate or severe left atrial enlargement; however, this needs to be independently confirmed before influencing clinical practice.. © 2019 American Medical Association. All rights reserved
    corecore