6 research outputs found

    Factors affecting the electrocardiographic QT interval in malaria: A systematic review and meta-analysis of individual patient data.

    Get PDF
    BACKGROUND: Electrocardiographic QT interval prolongation is the most widely used risk marker for ventricular arrhythmia potential and thus an important component of drug cardiotoxicity assessments. Several antimalarial medicines are associated with QT interval prolongation. However, interpretation of electrocardiographic changes is confounded by the coincidence of peak antimalarial drug concentrations with recovery from malaria. We therefore reviewed all available data to characterise the effects of malaria disease and demographic factors on the QT interval in order to improve assessment of electrocardiographic changes in the treatment and prevention of malaria. METHODS AND FINDINGS: We conducted a systematic review and meta-analysis of individual patient data. We searched clinical bibliographic databases (last on August 21, 2017) for studies of the quinoline and structurally related antimalarials for malaria-related indications in human participants in which electrocardiograms were systematically recorded. Unpublished studies were identified by the World Health Organization (WHO) Evidence Review Group (ERG) on the Cardiotoxicity of Antimalarials. Risk of bias was assessed using the Pharmacoepidemiological Research on Outcomes of Therapeutics by a European Consortium (PROTECT) checklist for adverse drug events. Bayesian hierarchical multivariable regression with generalised additive models was used to investigate the effects of malaria and demographic factors on the pretreatment QT interval. The meta-analysis included 10,452 individuals (9,778 malaria patients, including 343 with severe disease, and 674 healthy participants) from 43 studies. 7,170 (68.6%) had fever (body temperature ≥ 37.5°C), and none developed ventricular arrhythmia after antimalarial treatment. Compared to healthy participants, patients with uncomplicated falciparum malaria had shorter QT intervals (-61.77 milliseconds; 95% credible interval [CI]: -80.71 to -42.83) and increased sensitivity of the QT interval to heart rate changes. These effects were greater in severe malaria (-110.89 milliseconds; 95% CI: -140.38 to -81.25). Body temperature was associated independently with clinically significant QT shortening of 2.80 milliseconds (95% CI: -3.17 to -2.42) per 1°C increase. Study limitations include that it was not possible to assess the effect of other factors that may affect the QT interval but are not consistently collected in malaria clinical trials. CONCLUSIONS: Adjustment for malaria and fever-recovery-related QT lengthening is necessary to avoid misattributing malaria-disease-related QT changes to antimalarial drug effects. This would improve risk assessments of antimalarial-related cardiotoxicity in clinical research and practice. Similar adjustments may be indicated for other febrile illnesses for which QT-interval-prolonging medications are important therapeutic options

    The arrhythmogenic cardiotoxicity of the quinoline and structurally related antimalarial drugs: a systematic review

    No full text
    Abstract Background Several quinoline and structurally related antimalarial drugs are associated with cardiovascular side effects, particularly hypotension and electrocardiographic QT interval prolongation. A prolonged QT interval is a sensitive but not specific risk marker for the development of Torsade de Pointes—a potentially lethal polymorphic ventricular tachyarrhythmia. The increasing use of quinoline and structurally related antimalarials in mass treatments to eliminate malaria rapidly highlights the need to review their cardiovascular safety profiles. Methods The primary objective of this systematic review was to describe the documented clinical and electrocardiographic cardiovascular side effects of quinine, mefloquine, lumefantrine, piperaquine, halofantrine, chloroquine, sulfadoxine-pyrimethamine, amodiaquine, and primaquine. Trials in healthy subjects or patients with Plasmodium falciparum or P. vivax infection were included if at least two ECGs were conducted during the trial. All trial designs were included except case reports and pooled analyses. Secondary outcomes were the methods adopted by trials for measuring and reporting the QT interval. Results Data from trials published between 1982 and July 2016 were included. A total of 177 trials met the inclusion criteria. 35,448 participants received quinoline antimalarials in these trials, of which 18,436 participants underwent ECG evaluation. Subjects with co-medication use or comorbidities including cardiovascular disease were excluded from the majority of trials. Dihydroartemisinin-piperaquine was the drug most studied (5083 participants). Despite enormous use over the past 60 years, only 1076, 452, and 150 patients had ECG recordings reported in studies of chloroquine, amodiaquine, and primaquine respectively. Transiently high concentrations of quinine, quinidine, and chloroquine following parenteral administration have all been associated with hypotension, but there were no documented reports of death or syncope attributable to a cardiovascular cause, nor of electrocardiographic recordings of ventricular arrhythmia in these trials. The large volume of missing outcome information and the heterogeneity of ECG interval reporting and measurement methodology did not allow pooled quantitative analysis of QT interval changes. Conclusions No serious cardiac adverse effects were recorded in malaria clinical trials of 35,548 participants who received quinoline and structurally related antimalarials with close follow-up including 18,436 individuals who underwent ECG evaluation. While these findings provide further evidence of the rarity of serious cardiovascular events after treatment with these drugs, they also underscore the need for continued strengthening of pharmacovigilance systems for robust detection of rare drug adverse events in real-world populations. A standardised approach to measurement and reporting of ECG data in malaria trials is also needed. Trial registration PROSPERO CRD4201603667

    Factors affecting the electrocardiographic QT interval in malaria: A systematic review and meta-analysis of individual patient data

    No full text
    BACKGROUND: Electrocardiographic QT interval prolongation is the most widely used risk marker for ventricular arrhythmia potential and thus an important component of drug cardiotoxicity assessments. Several antimalarial medicines are associated with QT interval prolongation. However, interpretation of electrocardiographic changes is confounded by the coincidence of peak antimalarial drug concentrations with recovery from malaria. We therefore reviewed all available data to characterise the effects of malaria disease and demographic factors on the QT interval in order to improve assessment of electrocardiographic changes in the treatment and prevention of malaria. METHODS AND FINDINGS: We conducted a systematic review and meta-analysis of individual patient data. We searched clinical bibliographic databases (last on August 21, 2017) for studies of the quinoline and structurally related antimalarials for malaria-related indications in human participants in which electrocardiograms were systematically recorded. Unpublished studies were identified by the World Health Organization (WHO) Evidence Review Group (ERG) on the Cardiotoxicity of Antimalarials. Risk of bias was assessed using the Pharmacoepidemiological Research on Outcomes of Therapeutics by a European Consortium (PROTECT) checklist for adverse drug events. Bayesian hierarchical multivariable regression with generalised additive models was used to investigate the effects of malaria and demographic factors on the pretreatment QT interval. The meta-analysis included 10,452 individuals (9,778 malaria patients, including 343 with severe disease, and 674 healthy participants) from 43 studies. 7,170 (68.6%) had fever (body temperature ≥ 37.5°C), and none developed ventricular arrhythmia after antimalarial treatment. Compared to healthy participants, patients with uncomplicated falciparum malaria had shorter QT intervals (-61.77 milliseconds; 95% credible interval [CI]: -80.71 to -42.83) and increased sensitivity of the QT interval to heart rate changes. These effects were greater in severe malaria (-110.89 milliseconds; 95% CI: -140.38 to -81.25). Body temperature was associated independently with clinically significant QT shortening of 2.80 milliseconds (95% CI: -3.17 to -2.42) per 1°C increase. Study limitations include that it was not possible to assess the effect of other factors that may affect the QT interval but are not consistently collected in malaria clinical trials. CONCLUSIONS: Adjustment for malaria and fever-recovery-related QT lengthening is necessary to avoid misattributing malaria-disease-related QT changes to antimalarial drug effects. This would improve risk assessments of antimalarial-related cardiotoxicity in clinical research and practice. Similar adjustments may be indicated for other febrile illnesses for which QT-interval-prolonging medications are important therapeutic options
    corecore