1,523 research outputs found

    Amphibian chytridiomycosis : a review with focus on fungus-host interactions

    Get PDF
    Amphibian declines and extinctions are emblematic for the current sixth mass extinction event. Infectious drivers of these declines include the recently emerged fungal pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans (Chytridiomycota). The skin disease caused by these fungi is named chytridiomycosis and affects the vital function of amphibian skin. Not all amphibians respond equally to infection and host responses might range from resistant, over tolerant to susceptible. The clinical outcome of infection is highly dependent on the amphibian host, the fungal virulence and environmental determinants. B. dendrobatidis infects the skin of a large range of anurans, urodeles and caecilians, whereas to date the host range of B. salamandrivorans seems limited to urodeles. So far, the epidemic of B. dendrobatidis is mainly limited to Australian, neotropical, South European and West American amphibians, while for B. salamandrivorans it is limited to European salamanders. Other striking differences between both fungi include gross pathology and thermal preferences. With this review we aim to provide the reader with a state-of-the art of host-pathogen interactions for both fungi, in which new data pertaining to the interaction of B. dendrobatidis and B. salamandrivorans with the host's skin are integrated. Furthermore, we pinpoint areas in which more detailed studies are necessary or which have not received the attention they merit

    Role of sialic acid in brachyspira hyodysenteriae adhesion to pig colonic mucins

    Get PDF
    Infection with Brachyspira hyodysenteriae results in mucoid hemorrhagic diarrhea. This pathogen is associated with the colonic mucus layer, mainly composed of mucins. Infection regulates mucin O-glycosylation in the colon and increases mucin secretion as well as B. hyodysenteriae binding sites on mucins. Here, we analyzed potential mucin epitopes for B. hyodysenteriae adhesion in the colon, as well as the effect of colonic mucins on bacterial growth. Associations between B. hyodysenteriae binding to pig colonic mucins and mucin glycan data showed that B. hyodysenteriae binding was associated with the presence of N-glycolylneuraminic acid (NeuGc) on mucins. The role of sialic acid in B. hyodysenteriae adhesion was analyzed after the removal of sialic acid residues on the mucins by enzymatic treatment with sialidase A, which decreased bacterial binding to the mucins. The effect of pig colonic mucins on B. hyodysenteriae growth was determined in carbohydrate-free medium. B. hyodysenteriae growth increased in the presence of mucins from two out of five infected pigs, suggesting utilization of mucins as a carbon source for growth. Additionally, bacterial growth was enhanced by free sialic acid and N-acetylglucosamine. The results highlight a role of sialic acid as an adhesion epitope for B. hyodysenteriae interaction with colonic mucins. Furthermore, the mucin response and glycosylation changes exerted in the colon during B. hyodysenteriae infection result in a potentially favorable environment for pathogen growth in the intestinal mucus layer

    Prolonged environmental persistence requires efficient disinfection procedures to control Devriesea agamarum associated disease in lizards

    Get PDF
    Aims: Devriesea agamarum infection causes chronic proliferative dermatitis, especially in desert dwelling lizards. The present study was concerned with evaluating persistency of D. agamarum in the environment and the evaluation of the efficacy of various disinfection procedures. Methods and Results: First, the survival of D. agamarum was assessed both in dermal crusts obtained from clinically and naturally infected lizards, and during periods of prolonged nutrient starvation on dry surface, in moist sand and in distilled water. Secondly, a modified European Suspension Test was performed to determine the efficacy of eight procedures for the disinfection of equipment, environmental surfaces and the topical treatment of D. agamarum-associated dermal lesions. The bacterium proved to persist and remain viable for up to 57 days in dermal crusts and for more than 5 months in moist sand and distilled water. In contrast, survival on dry surfaces was limited. The results of the described dilution-neutralization method demonstrated that most of the tested disinfection procedures were sufficient in achieving a 5-decimal logarithmic reduction in the number of D. agamarum colony-forming units. The use of relatively low concentrations of hydrogen peroxide and a boric and peracetic acid solution on the other hand resulted in insufficient reduction in viable counts. Conclusions: Devriesea agamarum can persist for long periods of time in the environment, especially under moist conditions, making the use of suitable disinfection procedures necessary. Significance and Impact of the Study: This study demonstrates the need for a dry environment for most desert lizards and the use of effective disinfection procedures next to antimicrobial treatment to eliminate D. agamarum-associated disease from captive saurian collections

    Progress and problems in vaccination against necrotic enteritis in broiler chickens

    Get PDF
    Necrotic enteritis in broilers is caused by Clostridium perfringens type A strains that produce the NetB toxin. Necrotic enteritis is one of the gastrointestinal diseases in poultry that has gained worldwide importance during the last decade due to efforts to improve broiler performance. Prevention strategies include avoiding predisposing factors, such as coccidiosis, and in-feed supplementation with a variety of feed additives. However, vaccination with modified toxin or other secreted immunogenic proteins seems a logical preventive tool for protection against a toxin-producing bacterium. Formalin-inactivated crude supernatant has been used initially for vaccination. Several studies have been carried out recently to identify the most important immunogenic and protective proteins that can be used for vaccination. These include the NetB toxin, as well as a number of other proteins. There is evidence that immunization with single proteins is not protective against severe challenge and that combinations of different antigens are needed. Most published studies have used multiple dosage vaccination regimens that are not relevant for practical use in the broiler industry. Single vaccination regimens for 1-day-old chicks appear to be non-protective. This review describes the history of vaccination strategies against necrotic enteritis in broilers and gives an update on future vaccination strategies that are applicable in the field. These may include breeder hen vaccination, in ovo vaccination and live attenuated vectors to be used in feed or in drinking water

    Genotyping and antimicrobial resistance patterns of Escherichia coli O157 originating from cattle farms

    Get PDF
    During a Escherichia coli O157 prevalence study on cattle farms, 324 E. coli O157 isolates were collected from 68 out of 180 cattle farms. All isolates harbored the eaeA gene and the enterohemolysin (ehxA) gene. The majority of the strains only contained vtx2 (245 isolates), the combination of vtx1 and vtx2 was detected in 50 isolates, and in 29 isolates none of the vtx genes was present. Pulsed-field gel electrophoresis (PFGE) revealed that at a similarity level of 98% the isolates grouped into 83 different genotypes, 76 of which were only detected on one farm. Twenty-two out of the 68 positive farms harbored isolates belonging to more than one PFGE type, with a maximum of four different PFGE types. Minimal inhibitory concentrations of 10 antimicrobial agents were determined on a subset of 116 isolates, that is, one isolate per positive age category per farm. Acquired resistance to at least one antimicrobial agent was detected in 18 isolates and within a farm, only one resistance pattern was observed. All these 18 isolates were resistant toward streptomycin, and 16 of them also showed resistance toward sulfisoxazole. Six isolates were resistant to three or more antimicrobial agents
    corecore