9 research outputs found

    In vitro cell compatibility and antibacterial activity of microencapsulated doxycycline designed for improved localized therapy of septic arthritis

    Get PDF
    OBJECTIVES: For the treatment of septic arthritis in large animals, the local application of antibiotics as a slow release system may be an appropriate means to reach high local bioactivity and low systemic side effects and drug residues. In this study, doxycycline microspheres were developed and tested in vitro for their drug-release properties, suitability for intra-articular application and antimicrobial activity. METHODS: The development of a slow release system was achieved by microencapsulation of the drug into poly(lactide-co-glycolide) microspheres by a novel ultrasonic atomization method. Drug elution was evaluated from microspheres dispersed in elution medium at pre-defined time points by HPLC. Joint-tissue compatibility was tested on cultured bovine synoviocytes by evaluating the expression of pro-inflammatory cytokine mRNA and the production of nitric oxide (NO). Finally, the antimicrobial activity of the released antibiotic was assessed with gram-negative and gram-positive bacteria exposed to release medium sampled at days 1, 7 and 12 after microsphere suspension. RESULTS: An adequate size of the microspheres, sufficient stabilization of doxycycline in aqueous environment and drug release (25 mg microspheres in 4 mL medium) above MIC for bacteria usually isolated in bovine and equine joints were obtained over 15 days. Although the cytokine mRNA expression reflected the excellent tissue compatibility, the results with NO yielded contradictory results. Antimicrobial tests of the release medium proved to match perfectly the activity of non-encapsulated, free doxycycline as reported in the literature. CONCLUSIONS: The newly developed doxycycline delivery system achieved the target specifications and is ready for in vivo testin

    Driven Assembly of Lignin into Microcapsules for Storage and Delivery of Hydrophobic Molecules

    Get PDF
    Oil-filled microcapsules of kraft lignin were synthe- sized by first creating an oil in water emulsion followed by a high- intensity, ultrasound-assisted cross-linking of lignin at the water/oil interface. The rationale behind our approach is based on promoting documented lignin hydrophobic interactions within the oil phase, followed by locking the resulting spherical microsystems by covalent cross-linking using a high intensity ultrasound treatment. As further evidence in support of our rationale, confocal and optical microscopies demonstrated the uniformly spherical morphology of the created lignin microparticles. The detailed elucidation of the cross-linking processes was carried out using gel permeation chromatography (GPC) and quantitative 31P NMR analyses. The ability of lignin microcapsules to incorporate and release Coumarin-6 was evaluated in detail. In vitro studies and confocal laser scanning microscopy analysis were carried out to assess the internalization of capsules into Chinese hamster ovary (CHO) cells. This part of our work demonstrated that the lignin microcapsules are not cytotoxic and readily incorporated in the CHO cells

    A longitudinal study investigating the prevalence of Staphylococcus aureus genotype B in seasonally communal dairy herds

    Get PDF
    Abstract Staphylococcus aureus is a major mastitis-causing pathogen. Various genotypes have been recently identified in Switzerland but Staph. aureus genotype B (GTB) was the only genotype associated with high within-herd prevalence. The risk of introducing this Staph. aureus genotype into a herd may be increased by frequent animal movements. This may also be the case when cows from different herds of origin are commingled and share their milking equipment for a limited period of time. The aim of the present study was to determine the prevalence of Staph. aureus GTB in seasonally communal dairy herds before and after a summer period when dairy farming is characterized by mixing cows from different herds of origin in 1 communal operation. In addition, the environment was investigated to identify potential Staph. aureus GTB reservoirs relevant for transmission of the disease. A total of 829 cows from 110 herds of origin in 9 communal operations were included in the study. Composite milk samples were collected from all cows during the first or second milking after arrival at the communal operation and again shortly before the end of the season. Swab samples from the environment, involved personnel, and herding dogs present were collected before the cows arrived. At the end of the season, sampling of personnel was repeated. All samples were analyzed for the presence of Staph. aureus GTB using an established quantitative PCR. At the beginning of the season, Staph. aureus GTB-positive cows were identified in 7 out of 9 communal operations and the within-communal operation prevalence ranged from 2.2 to 38.9%. At the second sampling, all communal operations were Staph. aureus GTB positive, showing within-communal operation prevalence from 1 to 72.1%. The between-herd of origin prevalence increased from 27.3 to 56.6% and the cow-level prevalence increased from 11.2% at the beginning of the season to 29.6% at the end of the season. On 3 different communal operations, Staph. aureus GTB-positive swabs from seasonally employed personnel were identified at the end of the season. The results indicate that Staph. aureus GTB can easily spread in communal operations when cows from different herds of origin are mixed during the summer season. Effective management measures need to be designed to prevent the spread of Staph. aureus GTB in seasonally communal herds. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved. KEYWORDS: Staphylococcus aureus; biosecurity; communal herd; epidemiolog
    corecore